Patents by Inventor Michael F. Morris

Michael F. Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747310
    Abstract: Methods are provided for making rapid labeled dextran ladders and other calibrants useful in liquid chromatography. The methodologies include a two-step process comprising a reductive amination step of providing a reducing glycan and reacting it with a compound having a primary amine to produce an intermediate compound. The intermediate compound is then rapidly tagged with a rapid tagging reagent to produce the rapid labeled dextran ladder.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 5, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Michael F. Morris, Matthew A. Lauber, Darryl W. Brousmiche
  • Publication number: 20210331138
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 28, 2021
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Publication number: 20210237033
    Abstract: Novel chromatographic materials for chromatographic separations, columns, kits, and methods for preparation and separations with a superficially porous material comprising a substantially nonporous core and one or more layers of a porous shell material surrounding the core. The material of the invention is comprised of superficially porous particles and a narrow particle size distrution.
    Type: Application
    Filed: April 2, 2021
    Publication date: August 5, 2021
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Beatrice W. Muriithi, Michael F. Morris, Nicole L. Lawrence
  • Patent number: 11059026
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 13, 2021
    Assignee: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Publication number: 20210023531
    Abstract: The present disclosure relates to a method of separating a compound of interest, particularly unsaturated compound(s) of interest, from a mixture. The compound is separated using a column having a chromatographic stationary phase material for various different modes of chromatography containing a first substituent and a second substituent. The first substituent minimizes compound retention variation over time under chromatographic conditions. The second substituent chromatographically and selectively retains the compound by incorporating one or more aromatic, polyaromatic, heterocyclic aromatic, or polyheterocyclic aromatic hydrocarbon groups, each group being optionally substituted with an aliphatic group. In some examples, the present disclosure can include a chromatographic system having a chromatographic column having a stationary phase with a chromatographic substrate containing silica, metal oxide, an inorganic-organic hybrid material, a group of block copolymers, or a combination thereof.
    Type: Application
    Filed: July 10, 2020
    Publication date: January 28, 2021
    Applicant: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Jacob N. Fairchild, Jason F. Hill, Giorgis Isaac, Michael F. Morris, Kevin D. Wyndham
  • Patent number: 10744484
    Abstract: The present disclosure relates to a method of separating a compound of interest, particularly unsaturated compound(s) of interest, from a mixture. The compound is separated using a column having a chromatographic stationary phase material for various different modes of chromatography containing a first substituent and a second substituent. The first substituent minimizes compound retention variation over time under chromatographic conditions. The second substituent chromatographically and selectively retains the compound by incorporating one or more aromatic, polyaromatic, heterocyclic aromatic, or polyheterocyclic aromatic hydrocarbon groups, each group being optionally substituted with an aliphatic group. In some examples, the present disclosure can include a chromatographic system having a chromatographic column having a stationary phase with a chromatographic substrate containing silica, metal oxide, an inorganic-organic hybrid material, a group of block copolymers, or a combination thereof.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 18, 2020
    Assignee: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Jacob N. Fairchild, Jason F. Hill, Giorgis Isaac, Michael F. Morris, Kevin D. Wyndham
  • Publication number: 20200124574
    Abstract: Methods are provided for making rapid labeled dextran ladders and other calibrants useful in liquid chromatography. The methodologies include a two-step process comprising a reductive amination step of providing a reducing glycan and reacting it with a compound having a primary amine to produce an intermediate compound. The intermediate compound is then rapidly tagged with a rapid tagging reagent to produce the rapid labeled dextran ladder.
    Type: Application
    Filed: October 25, 2019
    Publication date: April 23, 2020
    Inventors: Michael F. Morris, Matthew A. Lauber, Darryl W. Brousmiche
  • Patent number: 10502720
    Abstract: Methods are provided for making rapid labeled dextran ladders and other calibrants useful in liquid chromatography. The methodologies include a two-step process comprising a reductive amination step of providing a reducing glycan and reacting it with a compound having a primary amine to produce an intermediate compound. The intermediate compound is then rapidly tagged with a rapid tagging reagent to produce the rapid labeled dextran ladder.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: December 10, 2019
    Assignee: Waters Technologies Corporation
    Inventors: Michael F. Morris, Matthew A. Lauber, Darryl W. Brousmiche
  • Publication number: 20190322783
    Abstract: The current invention provides a novel method to synthesize a mono-disperse non-porous polymer particles with a unique gradient composition from the core to the shell. In particular, The present invention offers the flexibility to design the chemical and physical properties of different sections of the particle. This flexibility allows for significant latitude in the design of particles for analyzing a large variety of samples in different fields—through using these particles in different chromatography techniques including, but not limited to, ion exchange HPLC (e.g., bio-separation at different modes), reversed-phase HPLC, narrow bore and capillary HPLC, hydrophilic/hydrophobic interaction liquid chromatography, capillary electrochromatography separation, and two dimensional liquid chromatography.
    Type: Application
    Filed: February 27, 2019
    Publication date: October 24, 2019
    Inventors: Darryl W. Brousmiche, Kevin Daniel Wyndham, Mingcheng Xu, Michael F. Morris
  • Publication number: 20190217273
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Application
    Filed: March 20, 2019
    Publication date: July 18, 2019
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Patent number: 10265679
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: April 23, 2019
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Publication number: 20180345248
    Abstract: The present disclosure relates to a method of separating a compound of interest, particularly unsaturated compound(s) of interest, from a mixture. The compound is separated using a column having a chromatographic stationary phase material for various different modes of chromatography containing a first substituent and a second substituent. The first substituent minimizes compound retention variation over time under chromatographic conditions. The second substituent chromatographically and selectively retains the compound by incorporating one or more aromatic, polyaromatic, heterocyclic aromatic, or polyheterocyclic aromatic hydrocarbon groups, each group being optionally substituted with an aliphatic group.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Applicant: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Jacob N. Fairchild, Jason F. Hill, Giorgis Isaac, Michael F. Morris, Kevin D. Wyndham
  • Publication number: 20180326399
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Application
    Filed: March 5, 2018
    Publication date: November 15, 2018
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Patent number: 10092894
    Abstract: The present disclosure relates to a method of separating a compound of interest, particularly unsaturated compound(s) of interest, from a mixture. The compound is separated using a column having a chromatographic stationary phase material for various different modes of chromatography containing a first substituent and a second substituent. The first substituent minimizes compound retention variation over time under chromatographic conditions. The second substituent chromatographically and selectively retains the compound by incorporating one or more aromatic, polyaromatic, heterocyclic aromatic, or polyheterocyclic aromatic hydrocarbon groups, each group being optionally substituted with an aliphatic group.
    Type: Grant
    Filed: March 1, 2014
    Date of Patent: October 9, 2018
    Assignee: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Jacob N. Fairchild, Jason F. Hill, Giorgis Isaac, Michael F. Morris, Kevin D. Wyndham
  • Patent number: 9925521
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: March 27, 2018
    Assignee: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Publication number: 20170336368
    Abstract: Methods are provided for making rapid labeled dextran ladders and other calibrants useful in liquid chromatography. The methodologies include a two-step process comprising a reductive amination step of providing a reducing glycan and reacting it with a compound having a primary amine to produce an intermediate compound. The intermediate compound is then rapidly tagged with a rapid tagging reagent to produce the rapid labeled dextran ladder.
    Type: Application
    Filed: November 12, 2015
    Publication date: November 23, 2017
    Applicant: Waters Technologies Corporation
    Inventors: Michael F. Morris, Matthew A. Lauber, Darryl W. Brousmiche
  • Publication number: 20150133294
    Abstract: In one aspect, the present invention provides a chromatographic stationary phase material for various different modes of chromatography represented by Formula 1: [X](W)a(Q)b(T)c (Formula 1). X can be a high purity chromatographic core composition having a surface comprising a silica core material, metal oxide core material, an inorganic-organic hybrid material or a group of block copolymers thereof. W can be absent and/or can include hydrogen and/or can include a hydroxyl on the surface of X. Q can be a functional group that minimizes retention variation over time (drift) under chromatographic conditions utilizing low water concentrations. T can include one or more hydrophilic, polar, ionizable, and/or charged functional groups that chromatographically interact with the analyte. Additionally, b and c can be positive numbers, with the ratio 0.05?(b/c)?100, and a?0.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 14, 2015
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Michael F. Morris, Darryl W. Brousmiche, Jason F. Hill, Jacob N. Fairchild
  • Publication number: 20140319057
    Abstract: The present disclosure relates to a method of separating a compound of interest, particularly unsaturated compound(s) of interest, from a mixture. The compound is separated using a column having a chromatographic stationary phase material for various different modes of chromatography containing a first substituent and a second substituent. The first substituent minimizes compound retention variation over time under chromatographic conditions. The second substituent chromatographically and selectively retains the compound by incorporating one or more aromatic, polyaromatic, heterocyclic aromatic, or polyheterocyclic aromatic hydrocarbon groups, each group being optionally substituted with an aliphatic group.
    Type: Application
    Filed: March 1, 2014
    Publication date: October 30, 2014
    Applicant: Waters Technologies Corporation
    Inventors: Darryl W. Brousmiche, Jacob N. Fairchild, Jason F. Hill, Giorgis Isaac, Michael F. Morris, Kevin D. Wyndham
  • Publication number: 20130112605
    Abstract: Novel chromatographic materials for chromatographic separations, columns, kits, and methods for preparation and separations with a superficially porous material comprising a substantially nonporous core and one or more layers of a porous shell material surrounding the core. The material of the invention is comprised of superficially porous particles and a narrow particle size distrution.
    Type: Application
    Filed: July 25, 2011
    Publication date: May 9, 2013
    Applicant: Waters Technologies Corporation
    Inventors: Kevin D. Wyndham, Beatrice W. Muriithi, Michael F. Morris, Nicole L. Lawrence
  • Publication number: 20040142384
    Abstract: This invention relates to magnetic separators for magnetically separating different components of a test sample. The magnetic separators can be used in methods of separating cells.
    Type: Application
    Filed: January 16, 2003
    Publication date: July 22, 2004
    Inventors: Barb Ariel Cohen, Barbara J. Hughey, Michael F. Morris