Patents by Inventor Michael F. O'Rourke

Michael F. O'Rourke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11744477
    Abstract: A non-invasive method of estimating intra-cranial pressure (ICP). The method including the steps of: a. non-invasively measuring pressure pulses in an upper body artery; b. determining central aortic pressure (CAP) pulses that correspond to these measured pressure pulses; c. identifying features of the ICP wave which denote cardiac ejection and wave reflection from the cranium, including Ejection Duration (ED) and Augmentation Index of Pressure (PAIx); d. non-invasively measuring flow pulses in a central artery which supplies blood to the brain within the cranium; e. identifying features of the measured cerebral flow waves which denote cardiac ejection and wave reflection from the cranium as Flow Augmentation Index (FAIx); f. calculating an ICP flow augmentation index from the measured central flow pulses; g.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: September 5, 2023
    Inventor: Michael F. O'Rourke
  • Patent number: 11166643
    Abstract: A non-invasive method of estimating intra-cranial pressure (ICP). The method including the steps of: a. non-invasively measuring pressure pulses in an upper body artery; b. determining central aortic pressure (CAP) pulses that correspond to these measured pressure pulses; c. identifying features of the ICP wave which denote cardiac ejection and wave reflection from the cranium, including Ejection Duration (ED) and Augmentation Index of Pressure (PAIx); d. non-invasively measuring flow pulses in a central artery which supplies blood to the brain within the cranium; e. identifying features of the measured cerebral flow waves which denote cardiac ejection and wave reflection from the cranium as Flow Augmentation Index (FAIx); f. calculating an ICP flow augmentation index from the measured central flow pulses; g.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: November 9, 2021
    Inventor: Michael F. O'Rourke
  • Publication number: 20210204827
    Abstract: A non-invasive method of estimating intra-cranial pressure (ICP). The method including the steps of: a. non-invasively measuring pressure pulses in an upper body artery; b. determining central aortic pressure (CAP) pulses that correspond to these measured pressure pulses; c. identifying features of the ICP wave which denote cardiac ejection and wave reflection from the cranium, including Ejection Duration (ED) and Augmentation Index of Pressure (PAIx); d. non-invasively measuring flow pulses in a central artery which supplies blood to the brain within the cranium; e. identifying features of the measured cerebral flow waves which denote cardiac ejection and wave reflection from the cranium as Flow Augmentation Index (FAIx); f. calculating an ICP flow augmentation index from the measured central flow pulses; g.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 8, 2021
    Inventor: Michael F. O'Rourke
  • Publication number: 20170360318
    Abstract: A non-invasive method of estimating intra-cranial pressure (ICP). The method including the steps of: a. non-invasively measuring pressure pulses in an upper body artery; b. determining central aortic pressure (CAP) pulses that correspond to these measured pressure pulses; c. identifying features of the ICP wave which denote cardiac ejection and wave reflection from the cranium, including Ejection Duration (ED) and Augmentation Index of Pressure (PAIx); d. non-invasively measuring flow pulses in a central artery which supplies blood to the brain within the cranium; e. identifying features of the measured cerebral flow waves which denote cardiac ejection and wave reflection from the cranium as Flow Augmentation Index (FAIx); f. calculating an ICP flow augmentation index from the measured central flow pulses; g.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 21, 2017
    Inventor: Michael F. O'Rourke
  • Patent number: 8439844
    Abstract: A step rate optimization device (12). The device includes a timer, a pedometer, an arterial waveform sensor (24), a processor and an indicator (16). The device indicates to the user (10) of a substantially sub-optimal relationship between the user's pulse rate and stride rate when the user's dominant stride rate frequency is at about 2-3 Hz and has a larger amplitude than the component of the user's dominant pulse waveform frequency at about 4-7 Hz and of a substantially optimal relationship between the user's pulse rate and stride rate when the user's dominant stride rate frequency component is at about 4-7 Hz and has a larger amplitude than the component of the user's dominant pulse waveform frequency at about 2-3 Hz.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: May 14, 2013
    Assignee: Aortic Wrap Pty Ltd.
    Inventor: Michael F. O'Rourke
  • Publication number: 20100189209
    Abstract: A step rate optimization device (12). The device includes a timer, a pedometer, an arterial waveform sensor (24), a processor and an indicator (16). The timer is adapted to measure a predetermined period of time and issue a first signal indicative thereof. The pedometer is adapted to measure the number of a user's steps over the predetermined period of time and issue a second signal indicative thereof. The arterial waveform sensor (24) is adapted to issue a third signal indicative of the user's arterial pulse waveform over the predetermined period of time. The processor is adapted to receive said first, second and third signals and determine and issue a fourth signal indicative of the user's dominant stride rate frequency, the user's dominant pulse rate waveform frequency and the interaction of the user's dominant stride rate frequency and the user's dominant pulse rate waveform frequency in the range of approximately 0-8 Hz.
    Type: Application
    Filed: June 2, 2008
    Publication date: July 29, 2010
    Applicant: ATCOR MEDICAL PTY. LTD.
    Inventor: Michael F. O'Rourke
  • Patent number: 7628758
    Abstract: Methods for determining central systolic pressure are disclosed. A first method determines the time of peak in a measured carotid waveform and then determines the pressure in a measured radial waveform at the corresponding time. A second method utilises only a measured radial waveform. The waveform is analysed to determine a time indicative of lower body waveform and determines the pressure at this time. In each case, the determined pressure is substantially the same as the central systolic pressure.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 8, 2009
    Assignee: ATGor Medical Pty. Ltd.
    Inventor: Michael F. O'Rourke
  • Patent number: 5265011
    Abstract: The system measures the pressure pulses in an upper body peripheral artery and produces an electrical signal which represents the contours of these pulses. It then digitizes the signal and synthesizes the pressure pulses in the ascending aorta using either a frequency-domain or a time-domain calculation method. Next, the system separately averages the signals corresponding to the measured pulses and those corresponding to the synthesized pulses, and forms for each an "average pulse." The system identifies the wave foot in each of the average pulses, identifies the incisura in the average peripheral pulse, determines the amount of time associated with systole and, based on this time, segments the synthesized pulse into systolic and diastolic components.
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: November 23, 1993
    Assignee: Eastern Medical Testing Services, Inc.
    Inventor: Michael F. O'Rourke