Patents by Inventor Michael F. Petras

Michael F. Petras has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10074743
    Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: September 11, 2018
    Assignee: NXP USA, Inc.
    Inventors: Ganming Qin, Edouard D. De Fresart, Pon Sung Ku, Michael F. Petras, Moaniss Zitouni, Dragan Zupac
  • Patent number: 9871008
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: January 16, 2018
    Assignee: NXP USA, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Patent number: 9837299
    Abstract: Methods of forming 3-D ICs with integrated passive devices (IPDs) include stacking separately prefabricated substrates. An active device (AD) substrate has contacts on its upper portion. A ground plane is located between the AD substrate and an IPD substrate. The ground plane provides superior IPD to AD cross-talk attenuation.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 5, 2017
    Assignee: INVENSAS CORPORATION
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras, Chandrasekaram Ramiah
  • Publication number: 20170288051
    Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.
    Type: Application
    Filed: May 25, 2017
    Publication date: October 5, 2017
    Inventors: Ganming Qin, Edouard D. De Fresart, Pon Sung Ku, Michael F. Petras, Moaniss Zitouni, Dragan Zupac
  • Patent number: 9698131
    Abstract: Methods of forming 3-D ICs with integrated passive devices (IPDs) include stacking separately prefabricated substrates coupled by through-substrates-vias (TSVs). An active device (AD) substrate has contacts on its upper portion. An isolator substrate is bonded to the AD substrate so the TSVs in the isolator substrate are coupled to the contacts on the AD substrate. An IPD substrate is bonded to the isolator substrate so that TVs therein are coupled to an interconnect zone on the isolator substrate and/or TSVs therein. The IPDs of the IPD substrate are coupled by TSVs in the IPD and isolator substrates to devices in the AD substrate. The isolator substrate provides superior IPD to AD cross-talk attenuation while permitting each substrate to have small high aspect ratio TSVs, thus facilitating high circuit packing density and efficient manufacturing.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 4, 2017
    Assignee: Invensas Corporation
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 9680003
    Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 13, 2017
    Assignee: NXP USA, Inc.
    Inventors: Ganming Qin, Edouard D. De Fresart, Pon Sung Ku, Michael F. Petras, Moaniss Zitouni, Dragan Zupac
  • Publication number: 20170077051
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Application
    Filed: November 4, 2016
    Publication date: March 16, 2017
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Patent number: 9508599
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates and lower resistance inductors for the IC. This eliminates significant in-substrate electromagnetic coupling losses from planar inductors and interconnections overlying the substrate. The active transistor(s) are formed in the substrate proximate the front face. Planar capacitors are also formed over the front face (63) of the substrate. Various terminals of the transistor(s), capacitor(s) and inductor(s) are coupled to a ground plane on the rear face of the substrate using through-substrate-vias to minimize parasitic resistance. Parasitic resistance associated with the planar inductors and heavy current carrying conductors is minimized by placing them on the outer surface of the IC where they can be made substantially thicker and of lower resistance.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: November 29, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Patent number: 9419128
    Abstract: A device includes a semiconductor substrate having a surface, a trench in the semiconductor substrate extending vertically from the surface, a body region laterally adjacent the trench, spaced from the surface, having a first conductivity type, and in which a channel is formed during operation, a drift region between the body region and the surface, and having a second conductivity type, a gate structure disposed in the trench alongside the body region, recessed from the surface, and configured to receive a control voltage is applied to control formation of the channel, and a gate dielectric layer disposed along a sidewall of the trench between the gate structure and the body region. The gate structure and the gate dielectric layer have a substantial vertical overlap with the drift region such that electric field magnitudes in the drift region are reduced through application of the control voltage.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: August 16, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Moaniss Zitouni, Edouard D. de Frésart, Pon Sung Ku, Michael F. Petras, Ganming Qin, Evgueniy N. Stefanov, Dragan Zupac
  • Publication number: 20160111404
    Abstract: Methods of forming 3-D ICs with integrated passive devices (IPDs) include stacking separately prefabricated substrates coupled by through-substrates-vias (TSVs). An active device (AD) substrate has contacts on its upper portion. An isolator substrate is bonded to the AD substrate so the TSVs in the isolator substrate are coupled to the contacts on the AD substrate. An IPD substrate is bonded to the isolator substrate so that TVs therein are coupled to an interconnect zone on the isolator substrate and/or TSVs therein. The IPDs of the IPD substrate are coupled by TSVs in the IPD and isolator substrates to devices in the AD substrate. The isolator substrate provides superior IPD to AD cross-talk attenuation while permitting each substrate to have small high aspect ratio TSVs, thus facilitating high circuit packing density and efficient manufacturing.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras, Chandrasekaram RAMIAH
  • Publication number: 20160049508
    Abstract: A device includes a semiconductor substrate having a surface, a trench in the semiconductor substrate extending vertically from the surface, a body region laterally adjacent the trench, spaced from the surface, having a first conductivity type, and in which a channel is formed during operation, a drift region between the body region and the surface, and having a second conductivity type, a gate structure disposed in the trench alongside the body region, recessed from the surface, and configured to receive a control voltage is applied to control formation of the channel, and a gate dielectric layer disposed along a sidewall of the trench between the gate structure and the body region. The gate structure and the gate dielectric layer have a substantial vertical overlap with the drift region such that electric field magnitudes in the drift region are reduced through application of the control voltage.
    Type: Application
    Filed: October 29, 2015
    Publication date: February 18, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Moaniss Zitouni, Edouard D. de Frésart, Pon Sung Ku, Michael F. Petras, Ganming Qin, Evgueniy N. Stefanov, Dragan Zupac
  • Patent number: 9236365
    Abstract: Methods of forming 3-D ICs with integrated passive devices (IPDs) include stacking separately prefabricated substrates coupled by through-substrate-vias (TSVs). An active device (AD) substrate has contacts on its upper portion. An isolator substrate is bonded to the AD substrate so that TSVs in the isolator substrate are coupled to the contacts on the AD substrate. An IPD substrate is bonded to the isolator substrate so that TSVs therein are coupled to an interconnect zone on the isolator substrate and/or TSVs therein. The IPDs of the IPD substrate are coupled by TSVs in the IPD and isolator substrates to devices in the AD substrate. The isolator substrate provides superior IPD to AD cross-talk attenuation while permitting each substrate to have small high aspect ratio TSVs, thus facilitating high circuit packing density and efficient manufacturing.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 12, 2016
    Assignee: Invensas Corporation
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 9178027
    Abstract: A device includes a semiconductor substrate having a surface, a trench in the semiconductor substrate extending vertically from the surface, a body region laterally adjacent the trench, spaced from the surface, having a first conductivity type, and in which a channel is formed during operation, a drift region between the body region and the surface, and having a second conductivity type, a gate structure disposed in the trench alongside the body region, recessed from the surface, and configured to receive a control voltage is applied to control formation of the channel, and a gate dielectric layer disposed along a sidewall of the trench between the gate structure and the body region. The gate structure and the gate dielectric layer have a substantial vertical overlap with the drift region such that electric field magnitudes in the drift region are reduced through application of the control voltage.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: November 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Moaniss Zitouni, Edouard D. de Fresart, Pon Sung Ku, Michael F. Petras, Ganming Qin, Evgueniy N. Stefanov, Dragan Zupac
  • Patent number: 9064712
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates (60) and lower resistance inductors (44?, 45?) for the IC (46). This eliminates significant in-substrate electromagnetic coupling losses from planar inductors (44, 45) and interconnections (50-1?, 52-1?, 94, 94?, 94?) overlying the substrate (60). The active transistor(s) (41?) are formed in the substrate (60) proximate the front face (63). Planar capacitors (42?, 43?) are also formed over the front face (63) of the substrate (60). Various terminals (42-1?, 42-2?, 43-1, 43-2?,50?, 51?, 52?, 42-1?, 42-2?, etc.) of the transistor(s) (41?), capacitor(s) (42?, 43?) and inductor(s) (44?, 45?) are coupled to a ground plane (69) on the rear face (62) of the substrate (60) using through-substrate-vias (98, 98?) to minimize parasitic resistance.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: June 23, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren
  • Publication number: 20140332980
    Abstract: Methods of forming 3-D ICs with integrated passive devices (IPDs) include stacking separately prefabricated substrates coupled by through-substrate-vias (TSVs). An active device (AD) substrate has contacts on its upper portion. An isolator substrate is bonded to the AD substrate so that TSVs in the isolator substrate are coupled to the contacts on the AD substrate. An IPD substrate is bonded to the isolator substrate so that TSVs therein are coupled to an interconnect zone on the isolator substrate and/or TSVs therein. The IPDs of the IPD substrate are coupled by TSVs in the IPD and isolator substrates to devices in the AD substrate. The isolator substrate provides superior IPD to AD cross-talk attenuation while permitting each substrate to have small high aspect ratio TSVs, thus facilitating high circuit packing density and efficient manufacturing.
    Type: Application
    Filed: May 12, 2014
    Publication date: November 13, 2014
    Applicant: Invensas Corporation
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras
  • Patent number: 8722459
    Abstract: Methods of forming 3-D ICs with integrated passive devices (IPDs) include stacking separately prefabricated substrates coupled by through-substrate-vias (TSVs). An active device (AD) substrate has contacts on its upper portion. An isolator substrate is bonded to the AD substrate so that TSVs in the isolator substrate are coupled to the contacts on the AD substrate. An IPD substrate is bonded to the isolator substrate so that TSVs therein are coupled to an interconnect zone on the isolator substrate and/or TSVs therein. The IPDs of the IPD substrate are coupled by TSVs in the IPD and isolator substrates to devices in the AD substrate. The isolator substrate provides superior IPD to AD cross-talk attenuation while permitting each substrate to have small high aspect ratio TSVs, thus facilitating high circuit packing density and efficient manufacturing.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 13, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras
  • Patent number: 8344503
    Abstract: 3-D ICs (18, 18?, 90) with integrated passive devices (IPDs) (38) having reduced cross-talk and high packing density are provided by stacking separately prefabricated substrates (20, 30, 34) coupled by through-substrate-vias (TSVs) (40). An active device (AD) substrate (20) has contacts on its upper portion (26). An isolator substrate (30) is bonded to the AD substrate (20) so that TSVs (4030) in the isolator substrate (30) are coupled to the contacts (26) on the AD substrate (20), and desirably has an interconnect zone (44) on its upper surface. An IPD substrate (34) is bonded to the isolator substrate (30) so that TSVs (4034) therein are coupled to the interconnect zone (44) on the isolator substrate (30) and/or TSVs (4030) therein. The IPDs (38) are formed on its upper surface and coupled by TSVs (4034, 4030) in the IPD (34) and isolator (30) substrates to devices (26) in the AD substrate (20).
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: January 1, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul W. Sanders, Robert E. Jones, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 8329579
    Abstract: Through substrate vias (TSVs) are provided after substantially all high temperature operations needed to form a device region of a first thickness proximate the front surface of a substrate wafer by: (i) from the front surface, forming comparatively shallow vias of a first aspect ratio containing first conductors extending preferably through the first thickness but not through the initial wafer thickness, (ii) removing material from the rear surface to form a modified wafer of smaller final thickness with a new rear surface, and (iii) forming from the new rear surface, much deeper vias of second aspect ratios beneath the device region with second conductors therein contacting the first conductors, thereby providing front-to-back interconnections without substantially impacting wafer robustness during manufacturing and device region area. Both aspect ratios are desirably about ?40, usefully ?10 and preferably ?5.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: December 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul W. Sanders, Michael F. Petras, Chandrasekaram Ramiah
  • Patent number: 8283207
    Abstract: Through substrate vias for back-side electrical and thermal interconnections on very thin semiconductor wafers without loss of wafer mechanical strength during manufacturing are provided by: forming desired device regions with contacts on the front surface of an initially relatively thick wafer; etching via cavities partly through the wafer in the desired locations; filling the via cavities with a conductive material coupled to some device region contacts; mounting the wafer with its front side facing a support structure; thinning the wafer from the back side to expose internal ends of the conductive material filled vias; applying any desired back-side interconnect region coupled to the exposed ends of the filled vias; removing the support structure and separating the individual device or IC assemblies so as to be available for mounting on a further circuit board, tape or larger circuit.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: October 9, 2012
    Assignee: Freescale Semiconductors, Inc.
    Inventors: Chandrasekaram Ramiah, Douglas G. Mitchell, Michael F. Petras, Paul W. Sanders
  • Publication number: 20120037969
    Abstract: Low Q associated with passive components of monolithic integrated circuits (ICs) when operated at microwave frequencies can be avoided or mitigated using high resistivity (e.g., ?100 Ohm-cm) semiconductor substrates (60) and lower resistance inductors (44?, 45?) for the IC (46). This eliminates significant in-substrate electromagnetic coupling losses from planar inductors (44, 45) and interconnections (50-1?, 52-1?, 94, 94?, 94?) overlying the substrate (60). The active transistor(s) (41?) are formed in the substrate (60) proximate the front face (63). Planar capacitors (42?, 43?) are also formed over the front face (63) of the substrate (60). Various terminals (42-1?, 42-2?, 43-1, 43-2?,50?, 51?, 52?, 42-1?, 42-2?, etc.) of the transistor(s) (41?), capacitor(s) (42?, 43?) and inductor(s) (44?, 45?) are coupled to a ground plane (69) on the rear face (62) of the substrate (60) using through-substrate-vias (98, 98?) to minimize parasitic resistance.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 16, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Paul W. Sanders, Wayne R. Burger, Thuy B. Dao, Joel E. Keys, Michael F. Petras, Robert A. Pryor, Xiaowei Ren