Patents by Inventor Michael F. Raterman

Michael F. Raterman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230016743
    Abstract: Processes and systems for converting a hydrocarbon-containing feed. The feed and heated particles can be contacted within a pyrolysis zone to effect pyrolysis of at least a portion of the feed to produce a pyrolysis zone effluent and a first gaseous stream rich in olefins and a first particle stream rich in the particles can be obtained therefrom. At least a portion of the first particle stream, an oxidant, and steam can be fed into a gasification zone and contacted therein to effect gasification of at least a portion of coke disposed on the surface of the particles to produce a gasification zone effluent. A second gaseous stream rich in a synthesis gas and a second particle stream rich in heated and regenerated particles can be obtained from the gasification zone effluent. At least a portion of the second particle stream can be fed into the pyrolysis zone.
    Type: Application
    Filed: November 11, 2020
    Publication date: January 19, 2023
    Inventors: Mohsen N. Harandi, Michael F. Raterman, Paul F. Keusenkothen
  • Publication number: 20220275283
    Abstract: Processes and systems for upgrading a hydrocarbon-containing feed. The hydrocarbon containing feed and a plurality of fluidized particles can be fed into a pyrolysis reaction zone. The plurality of fluidized particles can have a first temperature that can be sufficiently high to enable pyrolysis of at least a portion of the hydrocarbon-containing feed on contacting the particles. The particles can include an oxide of a transition metal element capable of oxidizing molecular hydrogen at the first temperature. The hydrocarbon-containing feed can be contacted with the particles in the pyrolysis reaction zone to effect pyrolysis of at least a portion of the hydrocarbon-containing feed to produce a pyrolysis effluent. At least a portion of the transition metal element in the particles in the pyrolysis effluent can be at a reduced state compared to the transition metal element in the particles fed into the pyrolysis reaction zone.
    Type: Application
    Filed: July 30, 2020
    Publication date: September 1, 2022
    Inventors: Michael F. Raterman, Mohsen N. Harandi, Paul F. Keusenkothen, David B. Spry
  • Patent number: 11207651
    Abstract: A moving bed reactor is provided that can allow facilitate performing a reaction involving a three-phase flow under co-axial flow conditions for the solid and liquid portions of the three phase flow, while the gas portion of the three-phase flow is exposed to the solids under radial flow conditions. Methods for using such a moving bed reactor to perform a reaction, such as upgrading of a feed to distillate products, are also provided.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 28, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Anjaneya S. Kovvali, Michael F. Raterman, Arsam Behkish
  • Publication number: 20200398241
    Abstract: A moving bed reactor is provided that can allow facilitate performing a reaction involving a three-phase flow under co-axial flow conditions for the solid and liquid portions of the three phase flow, while the gas portion of the three-phase flow is exposed to the solids under radial flow conditions. Methods for using such a moving bed reactor to perform a reaction, such as upgrading of a feed to distillate products, are also provided.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 24, 2020
    Inventors: Anjaneya S. Kovvali, Michael F. Raterman, Arsam Behkish
  • Publication number: 20200063039
    Abstract: A method for reducing CO2 emissions from steam cracking operations can include: introducing an oxygen-rich stream comprising oxygen and from 0 wt % to 15 wt % nitrogen to a vessel; introducing hydrocarbon combustion fuel to the vessel; combusting oxygen and hydrocarbon combustion fuel in the vessel to (1) produce a flue gas comprising carbon dioxide and water and (2) heat a cracking coil passing through the vessel; and performing a steam cracking reaction in the cracking coil passing through the vessel.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 27, 2020
    Inventors: Mohsen N. Harandi, Michael F. Raterman, David B. Spry
  • Patent number: 10351486
    Abstract: Multiphase separators, processes and systems for converting an oxygenate and/or olefin feedstock to a hydrocarbon product are described herein.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: July 16, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Arsam Behkish, Michael F. Raterman, Surya Bhaskara Reddy Karri
  • Patent number: 10188998
    Abstract: Systems and methods are provided for controlling the flow and transport of catalyst particles within a reaction system. The flow of catalyst particles can be managed using a rotating disc or wheel that is configured within a roller volume to allow for control over the rate of catalyst flow while reducing or minimizing attrition of the catalyst particles. This can be achieved in part by maintaining a relationship between the center of the rotating disc, the inlet for catalyst particles to the roller volume, and the top wall of the roller volume so that catalyst particles are not exposed to compressive forces and/or abrasion during rotation of the disc. Additionally or alternately, the disc and roller volume surfaces can be configured to reduce or minimize the potential for catalyst particles to become trapped in “dead space” regions within the roller volume.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 29, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Arsam Behkish, Michael F. Raterman, Anjaneya S. Kovvali
  • Patent number: 10173946
    Abstract: Apparatuses and processes for converting an oxygenate feedstock, such as methanol and/or dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: January 8, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bing Du, Samuel A. Tabak, Mitch L. Hindman, Eric B. Shen, David L. Johnson, Mohsen N. Harandi, Clay R. Sutton, Lu Han, Michael F. Raterman, Zhongcheng Wang, Samia Ilias, Brett Loveless, Stephen J. McCarthy
  • Publication number: 20180296999
    Abstract: Systems and methods are provided for controlling the flow and transport of catalyst particles within a reaction system. The flow of catalyst particles can be managed using a rotating disc or wheel that is configured within a roller volume to allow for control over the rate of catalyst flow while reducing or minimizing attrition of the catalyst particles. This can be achieved in part by maintaining a relationship between the center of the rotating disc, the inlet for catalyst particles to the roller volume, and the top wall of the roller volume so that catalyst particles are not exposed to compressive forces and/or abrasion during rotation of the disc. Additionally or alternately, the disc and roller volume surfaces can be configured to reduce or minimize the potential for catalyst particles to become trapped in “dead space” regions within the roller volume.
    Type: Application
    Filed: March 19, 2018
    Publication date: October 18, 2018
    Inventors: Arsam BEHKISH, Michael F. RATERMAN, Anjaneya S. KOVVALI
  • Publication number: 20180214892
    Abstract: Electro-kinetic separation processes for removing solid particles from alkylated aromatic process streams are provided herein.
    Type: Application
    Filed: January 5, 2018
    Publication date: August 2, 2018
    Inventors: Bhupender S. Minhas, Anita S. Lee, Ivy D. Johnson, Kyle G. Lewis, Michael F. Raterman
  • Publication number: 20180155261
    Abstract: Systems and methods for upgrading natural gas that may include the division of a natural gas feed steam into two parts—one that is partially oxidized into syngas and a second that is “dry” reformed into syngas with the assistance of heat from the partial oxidation. Each of the resulting syngas products may then be combined, and after water is condensed from the syngas, the combined syngas product may be converted to dimethyl ether.
    Type: Application
    Filed: November 7, 2017
    Publication date: June 7, 2018
    Inventor: Michael F. Raterman
  • Patent number: 9938205
    Abstract: Apparatuses and processes for converting an oxygenate feedstock, such as methanol and dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: April 10, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bing Du, Samuel A. Tabak, Mitch L. Hindman, Eric B. Shen, David L. Johnson, Mohsen N. Harandi, Clay R. Sutton, Lu Han, Michael F. Raterman, Zhongcheng Wang, Rohit Vijay, Stephen J. McCarthy
  • Publication number: 20170137342
    Abstract: Multiphase separators, processes and systems for converting an oxygenate and/or olefin feedstock to a hydrocarbon product are described herein.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 18, 2017
    Inventors: Arsam BEHKISH, Michael F. Raterman, Surya Bhaskara Reddy KARRI
  • Publication number: 20160102032
    Abstract: Apparatuses and processes for converting an oxygenate feedstock, such as methanol and/or dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 14, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Bing Du, Samuel A. Tabak, Mitch L. Hindman, Eric B. Shen, David L. Johnson, Mohsen N. Harandi, Clay R. Sutton, Lu Han, Michael F. Raterman, Zhongcheng Wang, Samia Ilias, Brett Loveless, Stephen J. McCarthy
  • Publication number: 20160102031
    Abstract: Apparatuses and processes for converting an oxygenate feedstock, such as methanol and dimethyl ether, in a fluidized bed containing a catalyst to hydrocarbons, such as gasoline boiling components, olefins and aromatics are provided herein.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 14, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bing Du, Samuel A. Tabak, Mitch L. Hindman, Eric B. Shen, David L. Johnson, Mohsen N. Harandi, Clay R. Sutton, Lu Han, Michael F. Raterman, Zhongcheng Wang, Rohit Vijay, Stephen J. McCarthy
  • Patent number: 9120985
    Abstract: The present invention relates to an improved gasifier reactor design. In particular, the present invention relates to improved design of gasifier reactor faceplates, gasifier reactor walls, gasifier reactor cooling tubes, and gasifier reactor walls with integrated cooling channels. The present invention utilizes aluminum nitride and/or aluminum nitride/metal composite materials which promote many benefits to the present design herein, including improved corrosion and erosion resistively as compared to high alloy metal materials.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: September 1, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul D. Oldenburg, Michael F. Raterman
  • Patent number: 8951315
    Abstract: The present invention relates to an improved gasifier injection system. In particular, the present invention provides an improved apparatus and operating scheme to improve the control flow of solid particulates in a multi-burner gasifier. The system also provides for integrated flow control and emergency shutoff in the case of abnormal operating conditions or unexpected backflow of the process burners. This improved design simplifies the mechanical systems required for large multi-burner gasifiers thus providing a more reliable and compact gasifier feed system. In preferred embodiments, the gasifier hydrocarbon feed is substantially in a solid particulate state and is preferably comprised of coal, petrochemical coke, and/or solid biomass.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: February 10, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Michael F. Raterman
  • Patent number: 8778173
    Abstract: The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael F. Raterman, Daniel P. Leta, Walter D. Vann, Roby Bearden, Jr.
  • Patent number: 8753486
    Abstract: The invention relates to improved bitumen recovery processes and systems. One process provides for operation of a bitumen froth treatment plant at optimum shear rates in the feed pipe carrying the bitumen froth to the froth settling unit. Another process provides for optimizing the design of a bitumen froth treatment plant by optimizing the diameter of the feed pipe to impart an optimum shear rate to the bitumen froth mixture and further optimizing the volume of the feed pipe to impart an optimum residence time for the bitumen froth stream in the feed pipe. An optimal plant design is also disclosed, the plant including optimal diameter and volume of the feed pipe.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: June 17, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Arun K. Sharma, Michael F. Raterman
  • Publication number: 20140048380
    Abstract: The invention relates to improved bitumen recovery processes and systems. One process provides for operation of a bitumen froth treatment plant at optimum shear rates in the feed pipe carrying the bitumen froth to the froth settling unit. Another process provides for optimizing the design of a bitumen froth treatment plant by optimizing the diameter of the feed pipe to impart an optimum shear rate to the bitumen froth mixture and further optimizing the volume of the feed pipe to impart an optimum residence time for the bitumen froth stream in the feed pipe. An optimal plant design is also disclosed, the plant including optimal diameter and volume of the feed pipe.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Inventors: Arun K. Sharma, Michael F. Raterman