Patents by Inventor Michael F. Weber

Michael F. Weber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160238761
    Abstract: A broadband partial reflector includes a multilayer polymeric optical film having a total number of optical repeating units that monotonically increases in thickness value from a first side to a second side of the multilayer polymeric optical film. A baseline optical repeating unit thickness profile is defined by a first plurality of optical repeating units and having a first average slope, and a first apodized thickness profile of the multilayer polymeric optical film is defined by a second plurality of optical repeating units having a second average slope being at least 5 times greater than the first average slope. The second plurality of optical repeating units define the first side of the multilayer polymeric optical film and join the first plurality of optical repeating units. The second plurality of optical repeating units are in a range from 3-15% of the total number of optical repeating units.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Michael F. Weber, Timothy J. Nevitt, John A. Wheatley
  • Publication number: 20160170101
    Abstract: A broadband mirror, polarizer, or other reflector includes at least one stack of microlayers. Microlayers in the stack are arranged into optical repeat units. At a design angle of incidence such as normal incidence, the stack provides a 1st order reflection band, a 2nd order reflection band, and optionally a 3rd order reflection hand. The 2nd order reflection band overlaps, or substantially overlaps, the 1st and/or 3rd order reflection bands to form a single wide reflection band. The wide reflection band may include the 2nd and 1st but not a 3rd order reflection band, or the 2nd and 3rd but not the 1st order reflection band, or it may include the 1st, 2nd, and 3rd order reflection bands, as well as still higher order reflection bands. The wide reflection band may cover at least a portion of visible and infrared wavelengths.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Edward J. Kivel, Timothy J. Nevitt, Michael F. Weber
  • Patent number: 9322967
    Abstract: A broadband partial reflector includes a multilayer polymeric optical film having a total number of optical repeating units that monotonically increases in thickness value from a first side to a second side of the multilayer polymeric optical film. A baseline optical repeating unit thickness profile is defined by a first plurality of optical repeating units and having a first average slope, and a first apodized thickness profile of the multilayer polymeric optical film is defined by a second plurality of optical repeating units having a second average slope being at least 5 times greater than the first average slope. The second plurality of optical repeating units define the first side of the multilayer polymeric optical film and join the first plurality of optical repeating units. The second plurality of optical repeating units are in a range from 3-15% of the total number of optical repeating units.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: April 26, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael F. Weber, Timothy J. Nevitt, John A. Wheatley
  • Publication number: 20160109628
    Abstract: A multilayer optical film including a stack of microlayers arranged into optical repeat units. At a design angle of incidence, such as normal incidence, the stack provides a 1st order reflection band, a 2nd order reflection band, and optionally a 3rd order reflection band. The 2nd order reflection band substantially overlaps the 1st and/or 3rd order reflection bands to form a single wide reflection band. The wide reflection band may cover at least a portion of visible and infrared wavelengths. The multilayer optical film may include an additional optical layer which maybe be an anti-glare layer and/or may be an absorbing layer. The multilayer optical film is suitable for use as a window film.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 21, 2016
    Inventors: Michael F. Weber, Edward J. Kivel, Timothy J. Nevitt, Mark B. O'Neill
  • Publication number: 20160077266
    Abstract: A multilayer optical film body includes a first and second packet of microlayers. Each packet partially transmits and partially reflects light over an extended wavelength range, such as the visible region, for normally incident light polarized along a first principal axis of the film body. In combination, the first and second packets have an intermediate reflection and transmission (e.g. 5-95% internal transmission, on average) for the normally incident light, and similar intermediate reflection/transmission (e.g. 10-90% internal transmission, on average) for oblique light. The packets are laminated or otherwise connected so that light can pass through the packets sequentially. In at least a first test area of the film body, a high frequency spectral variability of the combination of packets is less than a high frequency spectral variability of the first packet by itself, and may also be less than a high frequency spectral variability of the second packet by itself.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 17, 2016
    Inventors: Michael F. Weber, Carl A. Stover
  • Publication number: 20160077361
    Abstract: Certain filters have been found to enhance color discrimination for individuals with color vision deficiency (CVD), aka color-blind individuals. The filters generally include a multilayer optical film with a strong, narrow reflection band in part of the green region of the visible spectrum. The film has an average internal transmission from 420-680 nm of at least 50%, 60%, or 70%, and an average internal transmission ?10%, 5%, 2%, or 1% over a 10 nm wide range that includes 550 nm associated with a reflection band having a width (FWHM) of 60 nm or 50 nm or less. The filter may include a magenta layer disposed on a viewer side of the multilayer optical film to reduce glare, the magenta layer selectively absorbing green light. The magenta layer combined with the multilayer optical film may provide a rejection band whose width (FWHM) is 60 nm or less.
    Type: Application
    Filed: January 8, 2014
    Publication date: March 17, 2016
    Inventors: Chad R. Wold, Michael F. Weber
  • Patent number: 9279921
    Abstract: A broadband mirror, polarizer, or other reflector includes at least one stack of microlayers. Microlayers in the stack are arranged into optical repeat units. At a design angle of incidence such as normal incidence, the stack provides a 1st order reflection band, a 2nd order reflection band, and optionally a 3rd order reflection band. The 2nd order reflection band overlaps, or substantially overlaps, the 1st and/or 3rd order reflection bands to form a single wide reflection band. The wide reflection band may include the 2nd and 1st but not a 3rd order reflection band, or the 2nd and 3rd but not the 1st order reflection band, or it may include the 1st, 2nd, and 3rd order reflection bands, as well as still higher order reflection bands. The wide reflection band may cover at least a portion of visible and infrared wavelengths.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 8, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Edward J. Kivel, Timothy J. Nevitt, Michael F. Weber
  • Publication number: 20160018700
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Application
    Filed: September 25, 2015
    Publication date: January 21, 2016
    Inventors: Encai HAO, Fei LU, William Blake KOLB, Brian W. OSTLIE, Adam D. HAAG, Michael Benton FREE, William D. COGGIO, Michael L. STEINER, Soemantri WIDAGDO, Kui CHEN-HO, Lan H. LIU, Robert F. KAMRATH, Scott M. TAPIO, John A. WHEATLEY, Charles D. HOYLE, Michael F. WEBER
  • Publication number: 20150378077
    Abstract: Polarizer stacks are described. More particularly, polarizer stacks that include an absorbing polarizer and multiple reflective polarizers, including at least one collimating reflective polarizer are described. Such polarizer stacks are capable of emitted light that is both collimated and color neutral. Backlights incorporating such polarizer stacks are also described.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 31, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Adam D. Haag, Timothy J. Nevitt, Michael F. Weber, Robert D. Taylor, Carl A. Stover
  • Patent number: 9188790
    Abstract: A multilayer optical film body includes a first and second packet of microlayers. Each packet partially transmits and partially reflects light over an extended wavelength range, such as the visible region, for normally incident light polarized along a first principal axis of the film body. In combination, the first and second packets have an intermediate reflection and transmission (e.g. 5-95% internal transmission, on average) for the normally incident light, and similar intermediate reflection/transmission (e.g. 10-90% internal transmission, on average) for oblique light. The packets are laminated or otherwise connected so that light can pass through the packets sequentially. In at least a first test area of the film body, a high frequency spectral variability of the combination of packets is less than a high frequency spectral variability of the first packet by itself, and may also be less than a high frequency spectral variability of the second packet by itself.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 17, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Michael F. Weber, Carl A. Stover
  • Publication number: 20150316697
    Abstract: Multilayer reflecting polarizing films are disclosed having increased in-plane refractive index differences between adjacent microlayers along both the pass and block axis, and having negative refractive index differences between adjacent microlayers along the thickness or z-axis. Major front and back surfaces of the film exposed to air provide a Fresnel reflectivity component to the pass axis reflectivity, and the microlayers provide a microlayer component to the pass axis reflectivity, such microlayer component preferably having a reflectivity of p-polarized light that increases with incidence angle faster than the Fresnel reflectivity component decreases so as to substantially avoid off-axis gain peaks for p-polarized light. The films preferably utilize a relatively small total number of microlayers, arranged in a single coherent stack with monotonic optical repeat unit thickness profile, and at least some microlayers preferably include polyethylene naphthalate or a copolymer thereof.
    Type: Application
    Filed: July 16, 2015
    Publication date: November 5, 2015
    Inventors: Kristopher J. Derks, Michael F. Weber, Shandon D. Hart, Carl A. Stover
  • Publication number: 20150301271
    Abstract: A laminated display unit having a light guide, an LCD panel laminated to a major surface of the light guide and a high modulus layer laminated to the light guide opposite the LCD panel. A first material having refractive index n1 is disposed immediately adjacent a first major surface of the light guide and a second material having a refractive index n2 is disposed immediately adjacent a second major surface of the light guide. The light guide has a refractive index ng which is greater than about 1.05 times nmax where nmax is the larger of n1 and n2. At least one of the first major surface and the second major surface includes a plurality of multiplets where each multiplet includes two or more extraction features.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 22, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew J. Ouderkirk, Michael F. Weber, Robert R. Kieschke, Timothy J. Nevitt, Charles David Hoyle
  • Publication number: 20150301267
    Abstract: An optical package comprises a light source generating light having a first aspect ratio, an anamorphic light guide to receive the light from the light source, a diverter array to receive and divert light from the anamorphic light guide, and a concentrator to collect light received from the diverter array, wherein the concentrator outputs light having a second aspect ratio, the second aspect ratio being greater than the first aspect ratio. An effective height of the output beam is lower than an effective height of the light source.
    Type: Application
    Filed: December 5, 2013
    Publication date: October 22, 2015
    Inventors: Andrew J. Ouderkirk, Max Powers, Nicholas T. Gabriel, Erin A. McDowell, Michael F. Weber
  • Publication number: 20150301261
    Abstract: A light guide having a first major surface, a second major surface, an input edge and an opposing edge, where at least one of the first major surface and the second major surface includes a plurality of multiplets. Each multiplet includes two or more extraction features having an indented geometry.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 22, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Timothy J. Nevitt, Charles David Hoyle, Michael F. Weber, Andrew J. Ouderkirk
  • Patent number: 9158155
    Abstract: A film construction (320) includes a broad band reflective polarizing film (312) that may be immersed in an ultra low refractive index medium (322, 324). The reflecting polarizing film is characterized by a pass axis and a block axis, and its reflectivity for white light of the pass state polarization increases with increasing incidence angle to provide a compressed or narrowed viewing cone in one or two planes.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 13, 2015
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventor: Michael F. Weber
  • Publication number: 20150268396
    Abstract: An optical film includes a polymeric bandstop filter reflecting a band of blue light in a range from 440 nm to 480 nm a polymeric bandstop filter reflecting a band of blue light in a range from 440 nm to 480 nm and transmitting greater than 50% of blue light at a wavelength of 10 nm longer than a long wavelength band edge and at a wavelength of 10 nm shorter than a short wavelength band edge.
    Type: Application
    Filed: March 20, 2014
    Publication date: September 24, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael F. Weber, Jonathan T. Kahl, Glenn E. Casner
  • Publication number: 20150260895
    Abstract: A film construction includes a broad band reflective polarizing film that may be immersed in an ultra low refractive index medium. The reflecting polarizing film is characterized by a pass axis and a block axis, and its reflectivity for white light of the pass state polarization increases with increasing incidence angle to provide a compressed or narrowed viewing cone selectively in one plane of incidence. In some embodiments, the plane of incidence associated with the compressed viewing cone is aligned with the pass axis. In other embodiments it is aligned with the block axis.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Michael F. WEBER, Tao LIU, Timothy J. NEVITT
  • Patent number: 9110245
    Abstract: Multilayer reflecting polarizing films are disclosed having increased in-plane refractive index differences between adjacent microlayers along both the pass and block axis, and having negative refractive index differences between adjacent microlayers along the thickness or z-axis. Major front and back surfaces of the film exposed to air provide a Fresnel reflectivity component to the pass axis reflectivity, and the microlayers provide a microlayer component to the pass axis reflectivity, such microlayer component preferably having a reflectivity of p-polarized light that increases with incidence angle faster than the Fresnel reflectivity component decreases so as to substantially avoid off-axis gain peaks for p-polarized light. The films preferably utilize a relatively small total number of microlayers, arranged in a single coherent stack with monotonic optical repeat unit thickness profile, and at least some microlayers preferably include polyethylene naphthalate or a copolymer thereof.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 18, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Kristopher J. Derks, Michael F. Weber, Shandon D. Hart, Carl A. Stover
  • Patent number: 9091408
    Abstract: A recycling cavity such as used in a backlight or similar extended area source includes a front and back reflector, the front reflector being partially transmissive to provide an output illumination area. The recycling cavity also includes a component that provides the cavity with a balance of specular and diffuse characteristics so as to balance cavity efficiency and brightness uniformity over the output area. The component can be characterized by a transport ratio of greater than 15% for a 15 degree incidence angle, and less than 95% for a 45 degree incidence angle.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: July 28, 2015
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael F. Weber, Timothy J. Nevitt, John A. Wheatley, Rolf W. Biernath, David G. Freier, Gilles J. Benoit, Charles D. Hoyle, Andrew J. Ouderkirk, Zhaohui Yang
  • Publication number: 20150205139
    Abstract: First and second optical films in a stack each has a structured surface defining extended Fresnel lenses. First and second Fresnel lenses of the respective first and second films extend generally parallel to different first and second in-plane axes respectively. The films may be attached together such that light transmitted by one film is intercepted by the other. The film stack may also include a diffuser disposed to scatter light transmitted by the optical film(s). Other decorative articles include an individual optical film having a structured surface with transmissive facets arranged in a cyclic slope sequence from substantially zero to a maximum positive slope to substantially zero to a maximum negative slope and back to substantially zero, the sequence repeating over some or all of the structured surface. The slope sequence may define alternating focusing and defocusing Fresnel lenses, and the Fresnel lenses may be extended and linear.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 23, 2015
    Inventors: Michael F. Weber, Tommie W. Kelley, Gilles J.B. Benoit