Patents by Inventor Michael Fodor

Michael Fodor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11017300
    Abstract: A system that suggests and refines priority, severity, historical resolution, resolution time and assignment group to resolve auto-generated incidents is provided. The system leverages an incident characterization list tracking essence key phrases associated with historical incidents generated by an application performance management (APM) system and a machine data (MD) analysis system. The system automatically obtains a first auto-generated incident, from the APM system or the MD analysis system, based on any specified search criteria being met, or detection of a deviation in the value of key metrics from a specified threshold value.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: May 25, 2021
    Assignee: Digital.ai Software, Inc.
    Inventors: Rahul Kapoor, Srikanth Gopalaswami, Michael Fodor
  • Patent number: 8694223
    Abstract: A method of controlling a traction control system (30) includes continuously adapting a steady state driven wheel speed to reference wheel speed ratio, so that said traction control system can avoid unnecessary actuations (e.g., demanding torque reduction). The continuous adaptation methodology provides traction control robustness to vehicles equipped with a spare tire, or a different final drive such as in the use of aftermarket parts. The method includes a dual rate adaptation that allows both fast adaptation and fine tuning capabilities of the ratio. The method includes comparing the instant driven wheel speed to reference wheel speed ratio to the filtered driven wheel speed to reference wheel speed ratio, to obtain a ratio difference. When the difference is above a threshold, the first filter constant is selected and the first constant is applied to an adaptation filter, resulting in a first filtered and adapted ratio. The traction control system is controlled with the adapted ratio.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 8, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Hongtei Eric Tseng, Michael Fodor, Davor Hrovat
  • Patent number: 8442735
    Abstract: In one example, a first vehicle traveling on a road is provided. The vehicle comprises a communication device coupled in the first vehicle configured to receive information transmitted by a second vehicle traveling on the road, the information identifying road surface conditions experience by the second vehicle; and a controller configured to adjust a vehicle operating parameter of the first vehicle in response to receiving the transmitted information from the second vehicle.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: May 14, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell
  • Patent number: 8108104
    Abstract: A rollover stability control system for a vehicle may include an object information device. An active suspension or an active steering system may be coupled to a wheel of the vehicle. The rollover system may include a lateral support system. A controller determines that an obstacle is an imminent tripping obstacle and raises or steers the wheel, to prevent the wheel from colliding with the obstacle, or deploys the lateral support system in response to a rollover notification signal and the determination. A rollover stability control system for a vehicle may include a chassis and a driving surface wheel. A wheel assembly is coupled to the chassis inward from the driving surface wheel relative to a longitudinal centerline of the vehicle. The wheel assembly contacts the driving surface when a roll angle of the vehicle is greater than a predetermined level.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: January 31, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Davor Hrovat, Eric Tseng, Michael Fodor
  • Patent number: 7873459
    Abstract: A method of controlling a vehicle that includes determining a dynamic normal load for the vehicle wheel, modifying the requested torque signal from a traction control system in response to the dynamic normal load to form a modified requested torque and controlling the engine in response to the modified requested torque. The controlling may be performed using the ratio of the dynamic normal load and the steady state normal load to form the modified requested torque.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: January 18, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Fodor, Davor Hrovat
  • Patent number: 7792625
    Abstract: A traction control system adjusts powertrain output to reduce wheel slip, where a relationship between powertrain output and pedal actuation is adjusted in response to environmental conditions.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: September 7, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell
  • Patent number: 7765050
    Abstract: In one example, a traction control system for a vehicle is shown. The system adjusts a relationship between powertrain output and pedal actuation in response to at least one of road grade and direction of wheel spin.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: July 27, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell
  • Patent number: 7577510
    Abstract: A method and system of controlling a vehicle 10 having a control system and a driveline comprises detecting driveline shudder and modifying the traction control system output in response to detecting driveline shudder to reduce the driveline shudder. The driveline shudder may be detected in various ways including determining the average driven wheel acceleration signal. Methods for controlling driveline shudder include changing the target slip and changing the engine output torque.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: August 18, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Fodor, Mitchell McConnell, Davor Hrovat
  • Publication number: 20090150037
    Abstract: A method of controlling a traction control system (30) includes continuously adapting a steady state driven wheel speed to reference wheel speed ratio, so that said traction control system can avoid unnecessary actuations (e.g., demanding torque reduction). The continuous adaptation methodology provides traction control robustness to vehicles equipped with a spare tire, or a different final drive such as in the use of aftermarket parts. The method includes a dual rate adaptation that allows both fast adaptation and fine tuning capabilities of the ratio. The method includes comparing the instant driven wheel speed to reference wheel speed ratio to the filtered driven wheel speed to reference wheel speed ratio, to obtain a ratio difference. When the difference is above a threshold, the first filter constant is selected and the first constant is applied to an adaptation filter, resulting in a first filtered and adapted ratio. The traction control system is controlled with the adapted ratio.
    Type: Application
    Filed: February 19, 2009
    Publication date: June 11, 2009
    Inventors: Hongtei Eric Tseng, Michael Fodor, Davor Hrovat
  • Publication number: 20090132141
    Abstract: A system for a vehicle, comprising of a traction control system for adjusting powertrain output to reduce wheel slip; an input device located in said vehicle configured to identify an environmental condition; and a powertrain controller to control powertrain output based on actuation of a pedal of the vehicle by the driver, where a relationship between powertrain output and pedal actuation is adjusted in response to said input device.
    Type: Application
    Filed: January 26, 2009
    Publication date: May 21, 2009
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell
  • Patent number: 7529611
    Abstract: A method of controlling a traction control system (30) includes continuously adapting a steady state driven wheel speed to reference wheel speed ratio, so that said traction control system can avoid unnecessary actuations (e.g., demanding torque reduction). The continuous adaptation methodology provides traction control robustness to vehicles equipped with a spare tire, or a different final drive such as in the use of aftermarket parts. The method includes a dual rate adaptation that allows both fast adaptation and fine tuning capabilities of the ratio. The method includes comparing the instant driven wheel speed to reference wheel speed ratio to the filtered driven wheel speed to reference wheel speed ratio, to obtain a ratio difference. When the difference is above a threshold, the first filter constant is selected and the first constant is applied to an adaptation filter, resulting in a first filtered and adapted ratio. The traction control system is controlled with the adapted ratio.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: May 5, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Hongtei Eric Tseng, Michael Fodor, Davor Hrovat
  • Patent number: 7499787
    Abstract: In one example, A method for controlling a powertrain of a vehicle with wheels, the vehicle having a pedal actuated by a driver, is described. The method may include generating powertrain torque transmitted to the wheels in a first relation to actuation of the pedal by the driver during a first condition where said transmitted torque causes said wheels to slip relative to a surface; overriding said driver actuated powertrain torque to control said slip; and during a second condition after said first condition where said vehicle is moving less than a threshold, generating powertrain torque transmitted to the wheels in a second relation to actuation of the pedal by the driver, where for a given pedal position, less powertrain torque is transmitted with said second relation compared to said first relation.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: March 3, 2009
    Assignee: Ford Global Technologies, LLC
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell
  • Publication number: 20080119984
    Abstract: A rollover stability control system for a vehicle may include an object information device. An active suspension or an active steering system may be coupled to a wheel of the vehicle. The rollover system may include a lateral support system. A controller determines that an obstacle is an imminent tripping obstacle and raises or steers the wheel, to prevent the wheel from colliding with the obstacle, or deploys the lateral support system in response to a rollover notification signal and the determination. A rollover stability control system for a vehicle may include a chassis and a driving surface wheel. A wheel assembly is coupled to the chassis inward from the driving surface wheel relative to a longitudinal centerline of the vehicle. The wheel assembly contacts the driving surface when a roll angle of the vehicle is greater than a predetermined level.
    Type: Application
    Filed: November 16, 2006
    Publication date: May 22, 2008
    Inventors: DAVOR HROVAT, ERIC TSENG, MICHAEL FODOR
  • Patent number: 7266437
    Abstract: A method a operating a traction control system using a traction controller (30) for an automotive vehicle (10) is provided. A slip target is first determined. Then, an operating temperature turning characteristic or slope of the slip curve may, in combination or alone, be used to adjust the slip trigger threshold above the slip target. Traction control mode is entered when the driven wheel speed is above the slip trigger threshold.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: September 4, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Davor Hrovat, Ralph Cunningham, Peter Lazarevski, Eric Tseng, Charles Bannon, Michael Fodor
  • Publication number: 20070032938
    Abstract: A method a operating a traction control system using a traction controller (30) for an automotive vehicle (10) is provided. A slip target is first determined. Then, an operating temperature turning characteristic or slope of the slip curve may, in combination or alone, be used to adjust the slip trigger threshold above the slip target. Traction control mode is entered when the driven wheel speed is above the slip trigger threshold.
    Type: Application
    Filed: August 5, 2005
    Publication date: February 8, 2007
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Davor Hrovat, Ralph Cunningham, Peter Lazarevski, Eric Tseng, Charles Bannon, Michael Fodor
  • Publication number: 20070027606
    Abstract: A method and system of controlling a vehicle 10 having a control system and a driveline comprises detecting driveline shudder and modifying the traction control system output in response to detecting driveline shudder to reduce the driveline shudder. The driveline shudder may be detected in various ways including determining the average driven wheel acceleration signal. Methods for controlling driveline shudder include changing the target slip and changing the engine output torque.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Michael Fodor, Mitch McConnell, Davor Hrovat
  • Publication number: 20070027605
    Abstract: A method of controlling a vehicle that includes determining a dynamic normal load for the vehicle wheel, modifying the requested torque signal from a traction control system in response to the dynamic normal load to form a modified requested torque and controlling the engine in response to the modified requested torque. The controlling may be performed using the ratio of the dynamic normal load and the steady state normal load to form the modified requested torque.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Michael Fodor, Davor Hrovat
  • Publication number: 20060293841
    Abstract: In one example, a first vehicle traveling on a road is provided. The vehicle comprises a communication device coupled in the first vehicle configured to receive information transmitted by a second vehicle traveling on the road, said information identifying road surface conditions experience by said second vehicle; and a controller configured to adjust a vehicle operating parameter of the first vehicle in response to receiving said transmitted information from said second vehicle.
    Type: Application
    Filed: June 15, 2005
    Publication date: December 28, 2006
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell
  • Publication number: 20060282207
    Abstract: A method of controlling a traction control system (30) includes continuously adapting a steady state driven wheel speed to reference wheel speed ratio, so that said traction control system can avoid unnecessary actuations (e.g., demanding torque reduction). The continuous adaptation methodology provides traction control robustness to vehicles equipped with a spare tire, or a different final drive such as in the use of aftermarket parts. The method includes a dual rate adaptation that allows both fast adaptation and fine tuning capabilities of the ratio. The method includes comparing the instant driven wheel speed to reference wheel speed ratio to the filtered driven wheel speed to reference wheel speed ratio, to obtain a ratio difference. When the difference is above a threshold, the first filter constant is selected and the first constant is applied to an adaptation filter, resulting in a first filtered and adapted ratio. The traction control system is controlled with the adapted ratio.
    Type: Application
    Filed: June 9, 2005
    Publication date: December 14, 2006
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Hongtei Tseng, Michael Fodor, Davor Hrovat
  • Publication number: 20060080023
    Abstract: In one example, a system for a vehicle is shown. The system includes a traction control system configured to adjust powertrain output to reduce wheel slip and a powertrain controller configured to control powertrain output based on actuation of a pedal of the vehicle by the driver, where a relationship between powertrain output and pedal actuation is adjusted in response to at least one of road grade and direction of wheel spin.
    Type: Application
    Filed: June 15, 2005
    Publication date: April 13, 2006
    Inventors: Davor Hrovat, Michael Fodor, Mitch McConnell