Patents by Inventor Michael Francis Xavier Gigliotti, Jr.

Michael Francis Xavier Gigliotti, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230398621
    Abstract: A nickel-based braze alloy composition is described, including nickel, about 1 weight % to about 5 weight % boron (B); and about 1 weight % to about 20 weight % germanium (Ge). The composition is free of any silicon. Superalloy articles that contains a crack or other type of void or gap filled with the nickel-based braze alloy composition are also described, along with methods for filling such a gap. Related articles of manufacture and brazing processes to join metal components are also disclosed.
    Type: Application
    Filed: August 23, 2023
    Publication date: December 14, 2023
    Inventors: Raghavendra Rao Adharapurapu, Michael Francis Xavier Gigliotti, Jr., David Edwin Budinger, Pazhayannur Ramanathan Subramanian, Jeffrey Jon Schoonover
  • Patent number: 11759877
    Abstract: A nickel-based braze alloy composition includes nickel, about 1 weight % to about 5 weight % boron (B); and about 1 weight % to about 20 weight % germanium (Ge). The composition is free of any silicon. Superalloy articles having a crack or other type of void or gap may be filled with the nickel-based braze alloy composition. Methods for filling such a gap are described.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: September 19, 2023
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Raghavendra Rao Adharapurapu, Michael Francis Xavier Gigliotti, Jr., David Edwin Budinger, Pazhayannur Ramanathan Subramanian, Jeffrey Jon Schoonover
  • Patent number: 11371120
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: March 10, 2019
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 10801088
    Abstract: Methods of forming an intermediate alloy and a Ni-base super alloy are disclosed along with the intermediate alloy and the Ni-base super alloy formed by the method. The method includes at least partially melting and solidifying a powder including about 5 to 15 wt. % of Co, 10 to 20 wt. % of Cr, 3 to 6 wt. % of Mo, 3 to 6 wt. % of W, 2 to 4 wt. % of Al, 4.2 to 4.7 wt. % of Ti, 0.01 to 0.05 wt. % of Zr, 0.015 to 0.060 wt. % of C, 0.001 to 0.030 wt. % of B and balance substantially Ni to form an intermediate alloy including a dendrite structure that includes columnar regions and intercolumnar regions and a primary dendrite arm spacing less than about 3 micrometers. The intermediate alloy is heat-treated to form the texture-free Ni-base super alloy.
    Type: Grant
    Filed: December 15, 2018
    Date of Patent: October 13, 2020
    Assignee: General Electric Company
    Inventors: Laura Cerully Dial, Michael Francis Xavier Gigliotti, Jr.
  • Patent number: 10597756
    Abstract: Gamma titanium aluminide intermetallic compositions (gamma TiAl intermetallics) based on the TiAl (gamma) intermetallic compound. The gamma TiAl intermetallics contain chromium and niobium, as well as controlled amounts of carbon that achieve a desirable balance in room temperature mechanical properties and high temperature creep capabilities at temperatures approaching and possibly exceeding 1600° F. (about 870° C.).
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: March 24, 2020
    Assignee: General Electric Company
    Inventors: Michael James Weimer, Bernard Patrick Bewlay, Michael Francis Xavier Gigliotti, Jr., Thomas Joseph Kelly
  • Publication number: 20200024699
    Abstract: Methods of forming an intermediate alloy and a Ni-base super alloy are disclosed along with the intermediate alloy and the Ni-base super alloy formed by the method. The method includes at least partially melting and solidifying a powder including about 5 to 15 wt. % of Co, 10 to 20 wt. % of Cr, 3 to 6 wt. % of Mo, 3 to 6 wt. % of W, 2 to 4 wt. % of Al, 4.2 to 4.7 wt. % of Ti, 0.01 to 0.05 wt. % of Zr, 0.015 to 0.060 wt. % of C, 0.001 to 0.030 wt. % of B and balance substantially Ni to form an intermediate alloy including a dendrite structure that includes columnar regions and intercolumnar regions and a primary dendrite arm spacing less than about 3 micrometers. The intermediate alloy is heat-treated to form the texture-free Ni-base super alloy.
    Type: Application
    Filed: December 15, 2018
    Publication date: January 23, 2020
    Inventors: Laura Cerully Dial, Michael Francis Xavier Gigliotti, JR.
  • Patent number: 10378087
    Abstract: Methods of forming an intermediate alloy and a Ni-base super alloy are disclosed along with the intermediate alloy and the Ni-base super alloy formed by the method. The method includes at least partially melting and solidifying a powder including about 5 to 15 wt. % of Co, 10 to 20 wt. % of Cr, 3 to 6 wt. % of Mo, 3 to 6 wt. % of W, 2 to 4 wt. % of Al, 4.2 to 4.7 wt. % of Ti, 0.01 to 0.05 wt. % of Zr, 0.015 to 0.060 wt. % of C, 0.001 to 0.030 wt. % of B and balance substantially Ni to form an intermediate alloy including a dendrite structure that includes columnar regions and intercolumnar regions and a primary dendrite arm spacing less than about 3 micrometers. The intermediate alloy is heat-treated to form the texture-free Ni-base super alloy.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: August 13, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Laura Cerully Dial, Michael Francis Xavier Gigliotti, Jr.
  • Patent number: 10370975
    Abstract: A rotor blade formed via additive manufacturing is provided. The rotor blade includes an airfoil and a coupled component. The airfoil includes a plurality of fused layers of a first material formed via additive manufacturing and defines a leading edge and a tip at a distal end. The coupled component includes a plurality of fused layers of a second material formed via additive manufacturing. An interlocking transition zone includes a plurality of projections alternately extending from the airfoil and the coupled component, respectively, to undetachably couple the airfoil and the coupled component.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: August 6, 2019
    Assignee: General Electric Company
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, Jr., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill
  • Publication number: 20190203323
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: March 10, 2019
    Publication date: July 4, 2019
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 10260370
    Abstract: An article, for example a turbomachinery article is presented. The article includes a weldable first component having a base portion and a flange portion. The flange portion is outwardly projecting normal to a surface of the base portion; and is joined with the base portion by a solid state joint. The base portion comprises a nanostructured ferritic alloy; and the flange portion comprises a steel substantially free of oxide nanofeatures. The first component is joined to a second component through the flange portion of the first component by a weld joint.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: April 16, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Richard DiDomizio, Anne O'Dell Knight, Laura Cerully Dial, Shenyan Huang, Michael Francis Xavier Gigliotti, Jr.
  • Patent number: 10227678
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 12, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 10184344
    Abstract: Turbine nozzles are provided for gas turbine engines. The turbine nozzle includes an arcuate inner band; an arcuate outer band; and a nozzle vane disposed between the arcuate inner band and the arcuate outer band. The radially inner end of the nozzle vane is attached to the arcuate inner band through an interlocking transition zone including a plurality of projections alternately extending from the radially inner end of the nozzle vane and the arcuate inner band, respectively, to undetachably couple the nozzle vane and the arcuate inner band. Optionally, the radially outer end of each nozzle vane is also attached to the arcuate outer band through an interlocking transition zone.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: January 22, 2019
    Assignee: General Electric Company
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, Jr., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill
  • Patent number: 10180072
    Abstract: A bladed disk for a gas turbine engine is provided. The bladed disk includes a rotor disk, a plurality of rotor blades, and an interlocking transition zone. The rotor disk includes a plurality of fused layers of a first material formed via additive manufacturing and defines an outer rim. The plurality of rotor blades includes a plurality of fused layers of a second material formed via additive manufacturing. The interlocking transition zone includes a plurality of projections alternately extending from the outer rim of the rotor disk and the plurality of rotor blades, respectively, to undetachably couple the rotor disk and the plurality of rotor blades.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: January 15, 2019
    Assignee: General Electric Company
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, Jr., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill
  • Publication number: 20180312946
    Abstract: Metal alloys are disclosed, comprising at least cobalt, nickel, iron and carbon, wherein: the content of cobalt is at least about 20% by weight; the content of iron and cobalt in combination is comprised between about 40% and about 70% by weight; the content of nickel is comprised between about 5% and about 25% by weight; and the content of carbon is more than 0% but less than about 0.05% by weight.
    Type: Application
    Filed: October 28, 2015
    Publication date: November 1, 2018
    Inventors: Michael Francis Xavier GIGLIOTTI, Jr., John Broddus DEATON, Jr., Massimo GIANNOZZI, Iacopo GIOVANNETTI, Pierluigi TOZZI
  • Publication number: 20180230576
    Abstract: In some embodiments, a gamma titanium aluminide alloy consists essentially of, in atomic percent, 38 to about 50% aluminum, 1 to about 6% niobium, 0.25 to about 2% tungsten, 0.01 to about 1.5% boron, up to about 1% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, up to about 2% manganese, and the balance titanium and incidental impurities. In some embodiments, the gamma titanium aluminide alloy forms at least a portion of a gas turbine component. In some embodiments, a gamma titanium aluminide alloy, consists essentially of, in atomic percent, about 40 to about 50% aluminum, about 1 to about 5% niobium, about 0.3 to about 1% tungsten, about 0.1 to about 0.3% boron, up to about 0.1% carbon, up to about 2% chromium, up to about 2% vanadium, up to about 2% manganese, up to about 1% molybdenum, and the balance titanium and incidental impurities.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Stephen Joseph BALSONE, Dwight Eric DAVIDSON, Michael Francis Xavier GIGLIOTTI, JR., Pazhayannur Ramanathan SUBRAMANIAN, Akane SUZUKI
  • Publication number: 20180230822
    Abstract: In some embodiments, a gamma titanium aluminide alloy consists essentially of, in atomic percent, about 38 to about 50% aluminum, about 6% niobium, about 0.25 to about 2% tungsten, optionally up to about 1.5% boron, about 0.01 to about 1.0% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, optionally up to about 2% manganese, and the balance titanium and incidental impurities. In some embodiments, the gamma titanium aluminide alloy forms at least a portion of a gas turbine component. In some embodiments, a gamma titanium aluminide alloy, consisting essentially of, in atomic percent, about 40 to about 50% aluminum, about 3 to about 5% niobium, about 0.5 to about 1.5% tungsten, about 0.01 to about 1.5% boron, about 0.01 to about 1.0% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, optionally up to about 2% manganese, and the balance titanium and incidental impurities.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Stephen Joseph BALSONE, Dwight Eric DAVIDSON, Michael Francis Xavier GIGLIOTTI, JR., Pazhayannur Ramanathan SUBRAMANIAN, Akane SUZUKI
  • Patent number: 10030298
    Abstract: A surface of an article is modified by first disposing a nickel-enriched region at the surface of a substrate, then enriching the nickel-enriched region with aluminum to form an aluminized region, and finally removing at least a portion of the aluminized region to form a processed surface of the substrate. Upon removal of this material, the roughness of the surface is reduced from a comparatively high initial roughness value to a comparatively low processed roughness value. In some embodiments, the processed roughness is less than about 95% of the initial roughness. Moreover, the sequence of steps described herein may be iterated one or more times to achieve further reduction in substrate surface roughness.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: July 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Laura Cerully Dial, William Thomas Carter, Michael Francis Xavier Gigliotti, Jr.
  • Publication number: 20180178303
    Abstract: A nickel-based braze alloy composition is described, including nickel, about 1 weight % to about 5 weight % boron (B); and about 1 weight % to about 20 weight % germanium (Ge). The composition is free of any silicon. Superalloy articles that contains a crack or other type of void or gap filled with the nickel-based braze alloy composition are also described, along with methods for filling such a gap. Related articles of manufacture and brazing processes to join metal components are also disclosed.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Raghavendra Rao Adharapurapu, Michael Francis Xavier Gigliotti, JR., David Edwin Budinger, Pazhayannur Ramanathan Subramanian, Jeffrey Jon Schoonover
  • Patent number: 9994716
    Abstract: A method for treating a powder, includes: dry mixing the powder with an effective amount of a treating additive to distribute a layer of the treating additive on a surface of a particle of the powder, a primary particle size of the treating additive being smaller than an average particle size of the powder. An associated treated powder is also described.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Wenqing Peng, Guoliang Wang, Michael Francis Xavier Gigliotti, Jr., Prabhjot Singh
  • Patent number: 9914172
    Abstract: A method of joining two components using additive manufacturing is provided. The method includes forming a first component made of a first material; forming an interlocking transition zone from the first material and a second material; and forming a second component made of the second material. The interlocking transition zone includes a plurality of projections alternately extending from the first component and the second component, respectively, to undetachably couple the first component and the second component.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: March 13, 2018
    Assignee: General Electric Company
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, Jr., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill