Patents by Inventor Michael Francis Xavier Gigliotti

Michael Francis Xavier Gigliotti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180312946
    Abstract: Metal alloys are disclosed, comprising at least cobalt, nickel, iron and carbon, wherein: the content of cobalt is at least about 20% by weight; the content of iron and cobalt in combination is comprised between about 40% and about 70% by weight; the content of nickel is comprised between about 5% and about 25% by weight; and the content of carbon is more than 0% but less than about 0.05% by weight.
    Type: Application
    Filed: October 28, 2015
    Publication date: November 1, 2018
    Inventors: Michael Francis Xavier GIGLIOTTI, Jr., John Broddus DEATON, Jr., Massimo GIANNOZZI, Iacopo GIOVANNETTI, Pierluigi TOZZI
  • Patent number: 10100386
    Abstract: A method for preparing an article of a base metal alloyed with an alloying element includes the steps of preparing a compound mixture by the steps of providing a chemically reducible nonmetallic base-metal precursor compound of a base metal, providing a chemically reducible nonmetallic alloying-element precursor compound of an alloying element, and thereafter mixing the base-metal precursor compound and the alloying-element precursor compound to form a compound mixture. The compound mixture is thereafter reduced to a metallic alloy, without melting the metallic alloy. The step of preparing or the step of chemically reducing includes the step of adding an other additive constituent. The metallic alloy is thereafter consolidated to produce a consolidated metallic article, without melting the metallic alloy and without melting the consolidated metallic article.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: Andrew Philip Woodfield, Eric Allen Ott, Clifford Earl Shamblen, Michael Francis Xavier Gigliotti
  • Publication number: 20180230576
    Abstract: In some embodiments, a gamma titanium aluminide alloy consists essentially of, in atomic percent, 38 to about 50% aluminum, 1 to about 6% niobium, 0.25 to about 2% tungsten, 0.01 to about 1.5% boron, up to about 1% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, up to about 2% manganese, and the balance titanium and incidental impurities. In some embodiments, the gamma titanium aluminide alloy forms at least a portion of a gas turbine component. In some embodiments, a gamma titanium aluminide alloy, consists essentially of, in atomic percent, about 40 to about 50% aluminum, about 1 to about 5% niobium, about 0.3 to about 1% tungsten, about 0.1 to about 0.3% boron, up to about 0.1% carbon, up to about 2% chromium, up to about 2% vanadium, up to about 2% manganese, up to about 1% molybdenum, and the balance titanium and incidental impurities.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Stephen Joseph BALSONE, Dwight Eric DAVIDSON, Michael Francis Xavier GIGLIOTTI, JR., Pazhayannur Ramanathan SUBRAMANIAN, Akane SUZUKI
  • Publication number: 20180230822
    Abstract: In some embodiments, a gamma titanium aluminide alloy consists essentially of, in atomic percent, about 38 to about 50% aluminum, about 6% niobium, about 0.25 to about 2% tungsten, optionally up to about 1.5% boron, about 0.01 to about 1.0% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, optionally up to about 2% manganese, and the balance titanium and incidental impurities. In some embodiments, the gamma titanium aluminide alloy forms at least a portion of a gas turbine component. In some embodiments, a gamma titanium aluminide alloy, consisting essentially of, in atomic percent, about 40 to about 50% aluminum, about 3 to about 5% niobium, about 0.5 to about 1.5% tungsten, about 0.01 to about 1.5% boron, about 0.01 to about 1.0% carbon, optionally up to about 2% chromium, optionally up to about 2% vanadium, optionally up to about 2% manganese, and the balance titanium and incidental impurities.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Stephen Joseph BALSONE, Dwight Eric DAVIDSON, Michael Francis Xavier GIGLIOTTI, JR., Pazhayannur Ramanathan SUBRAMANIAN, Akane SUZUKI
  • Patent number: 10030298
    Abstract: A surface of an article is modified by first disposing a nickel-enriched region at the surface of a substrate, then enriching the nickel-enriched region with aluminum to form an aluminized region, and finally removing at least a portion of the aluminized region to form a processed surface of the substrate. Upon removal of this material, the roughness of the surface is reduced from a comparatively high initial roughness value to a comparatively low processed roughness value. In some embodiments, the processed roughness is less than about 95% of the initial roughness. Moreover, the sequence of steps described herein may be iterated one or more times to achieve further reduction in substrate surface roughness.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: July 24, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Laura Cerully Dial, William Thomas Carter, Michael Francis Xavier Gigliotti, Jr.
  • Publication number: 20180178303
    Abstract: A nickel-based braze alloy composition is described, including nickel, about 1 weight % to about 5 weight % boron (B); and about 1 weight % to about 20 weight % germanium (Ge). The composition is free of any silicon. Superalloy articles that contains a crack or other type of void or gap filled with the nickel-based braze alloy composition are also described, along with methods for filling such a gap. Related articles of manufacture and brazing processes to join metal components are also disclosed.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Raghavendra Rao Adharapurapu, Michael Francis Xavier Gigliotti, JR., David Edwin Budinger, Pazhayannur Ramanathan Subramanian, Jeffrey Jon Schoonover
  • Patent number: 9994716
    Abstract: A method for treating a powder, includes: dry mixing the powder with an effective amount of a treating additive to distribute a layer of the treating additive on a surface of a particle of the powder, a primary particle size of the treating additive being smaller than an average particle size of the powder. An associated treated powder is also described.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: June 12, 2018
    Assignee: General Electric Company
    Inventors: Wenqing Peng, Guoliang Wang, Michael Francis Xavier Gigliotti, Jr., Prabhjot Singh
  • Patent number: 9914172
    Abstract: A method of joining two components using additive manufacturing is provided. The method includes forming a first component made of a first material; forming an interlocking transition zone from the first material and a second material; and forming a second component made of the second material. The interlocking transition zone includes a plurality of projections alternately extending from the first component and the second component, respectively, to undetachably couple the first component and the second component.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: March 13, 2018
    Assignee: General Electric Company
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, Jr., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill
  • Patent number: 9884393
    Abstract: Methods for repairing surface of a metal substrate are provided, which can include preparing the surface of the metal substrate for repair; melt attaching a base layer onto the surface of the metal substrate; fusing a plurality of first layers of a first material via additive manufacturing to the base coating; forming an interlocking transition zone via additive manufacturing from the first material and a second material; and fusing a plurality of second layers of the second material via additive manufacturing on the interlocking transition zone. The interlocking transition zone can have a plurality of projections alternately extending from the plurality of first layers and the plurality of second layers, respectively, to undetachably couple the plurality of first layers to the plurality of second layers. A repaired metal substrate is also provided.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: February 6, 2018
    Assignee: General Electric Company
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, Jr., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill
  • Publication number: 20170284206
    Abstract: The present invention relates to a ceramic or metallic component including a first region having a first porosity ranging between 1 and 30%. The component includes a second region having a second porosity that is less than the first porosity. The component includes at least one graded transition between the first and second regions.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 5, 2017
    Inventors: Herbert Chidsey ROBERTS, Michael Francis Xavier GIGLIOTTI, JR., Richard William ALBRECHT, JR., Eric Alan ESTILL, Peter Andrew FLYNN
  • Publication number: 20170167000
    Abstract: Methods of forming an intermediate alloy and a Ni-base super alloy are disclosed along with the intermediate alloy and the Ni-base super alloy formed by the method. The method includes at least partially melting and solidifying a powder including about 5 to 15 wt. % of Co, 10 to 20 wt. % of Cr, 3 to 6 wt. % of Mo, 3 to 6 wt. % of W, 2 to 4 wt. % of Al, 4.2 to 4.7 wt. % of Ti, 0.01 to 0.05 wt. % of Zr, 0.015 to 0.060 wt. % of C, 0.001 to 0.030 wt. % of B and balance substantially Ni to form an intermediate alloy including a dendrite structure that includes columnar regions and intercolumnar regions and a primary dendrite arm spacing less than about 3 micrometers. The intermediate alloy is heat-treated to form the texture-free Ni-base super alloy.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Laura Cerully Dial, Michael Francis Xavier Gigliotti, JR.
  • Publication number: 20170106587
    Abstract: A method of joining two components using additive manufacturing is provided. The method includes forming a first component made of a first material; forming an interlocking transition zone from the first material and a second material; and forming a second component made of the second material. The interlocking transition zone includes a plurality of projections alternately extending from the first component and the second component, respectively, to undetachably couple the first component and the second component.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, JR., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, Jr., Eric Alan Estill
  • Publication number: 20170106482
    Abstract: Methods for repairing surface of a metal substrate are provided, which can include preparing the surface of the metal substrate for repair; melt attaching a base layer onto the surface of the metal substrate; fusing a plurality of first layers of a first material via additive manufacturing to the base coating; forming an interlocking transition zone via additive manufacturing from the first material and a second material; and fusing a plurality of second layers of the second material via additive manufacturing on the interlocking transition zone. The interlocking transition zone can have a plurality of projections alternately extending from the plurality of first layers and the plurality of second layers, respectively, to undetachably couple the plurality of first layers to the plurality of second layers. A repaired metal substrate is also provided.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, JR., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, JR., Eric Alan Estill
  • Publication number: 20170107832
    Abstract: A bladed disk for a gas turbine engine is provided. The bladed disk includes a rotor disk, a plurality of rotor blades, and an interlocking transition zone. The rotor disk includes a plurality of fused layers of a first material formed via additive manufacturing and defines an outer rim. The plurality of rotor blades includes a plurality of fused layers of a second material formed via additive manufacturing. The interlocking transition zone includes a plurality of projections alternately extending from the outer rim of the rotor disk and the plurality of rotor blades, respectively, to undetachably couple the rotor disk and the plurality of rotor blades.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, JR., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, JR., Eric Alan Estill
  • Publication number: 20170107836
    Abstract: Turbine nozzles are provided for gas turbine engines. The turbine nozzle includes an arcuate inner band; an arcuate outer band; and a nozzle vane disposed between the arcuate inner band and the arcuate outer band. The radially inner end of the nozzle vane is attached to the arcuate inner band through an interlocking transition zone comprising a plurality of projections alternately extending from the radially inner end of the nozzle vane and the arcuate inner band, respectively, to undetachably couple the nozzle vane and the arcuate inner band. Optionally, the radially outer end of each nozzle vane is also attached to the arcuate outer band through an interlocking transition zone.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, JR., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, JR., Eric Alan Estill
  • Publication number: 20170107823
    Abstract: A rotor blade formed via additive manufacturing is provided. The rotor blade includes an airfoil and a coupled component. The airfoil includes a plurality of fused layers of a first material formed via additive manufacturing and defines a leading edge and a tip at a distal end. The coupled component includes a plurality of fused layers of a second material formed via additive manufacturing. An interlocking transition zone includes a plurality of projections alternately extending from the airfoil and the coupled component, respectively, to undetachably couple the airfoil and the coupled component.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 20, 2017
    Inventors: Herbert Chidsey Roberts, Richard William Albrecht, JR., Michael John McCarren, Peter Andrew Flynn, Michael Francis Xavier Gigliotti, JR., Eric Alan Estill
  • Publication number: 20170056975
    Abstract: The disclosure relates to an apparatus for manufacturing a metallic component, and corresponding methods. The apparatus may include a build plate with a build surface and an aperture. The apparatus may also include an actuator operable to translate a metallic component such that an end portion of the metallic component is positioned within the aperture of the build plate and below the build surface. The apparatus may further include a seal coupled within the aperture of the build plate and configured to engage the end portion of the metallic component. The aperture of the build plate, the seal, and the end portion of the metallic component may cooperate to form a powder bed to hold metallic powder therein. The apparatus may also include an external heat control mechanism operable to form a predetermined temperature profile of the end portion of the component to prevent cracking of the component.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 2, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Thomas CARTER, Mark Kevin MEYER, Andrew David DEAL, Mark Allen CHEVERTON, Samar Jyoti KALITA, Michael Francis Xavier GIGLIOTTI
  • Publication number: 20170051389
    Abstract: A surface of an article is modified by first disposing a nickel-enriched region at the surface of a substrate, then enriching the nickel-enriched region with aluminum to form an aluminized region, and finally removing at least a portion of the aluminized region to form a processed surface of the substrate. Upon removal of this material, the roughness of the surface is reduced from a comparatively high initial roughness value to a comparatively low processed roughness value. In some embodiments, the processed roughness is less than about 95% of the initial roughness. Moreover, the sequence of steps described herein may be iterated one or more times to achieve further reduction in substrate surface roughness.
    Type: Application
    Filed: August 21, 2015
    Publication date: February 23, 2017
    Inventors: Laura Cerully Dial, William Thomas Carter, Michael Francis Xavier Gigliotti, JR.
  • Publication number: 20160312653
    Abstract: An article, for example a turbomachinery article is presented. The article includes a weldable first component having a base portion and a flange portion. The flange portion is outwardly projecting normal to a surface of the base portion; and is joined with the base portion by a solid state joint. The base portion comprises a nanostructured ferritic alloy; and the flange portion comprises a steel substantially free of oxide nanofeatures. The first component is joined to a second component through the flange portion of the first component by a weld joint.
    Type: Application
    Filed: December 10, 2014
    Publication date: October 27, 2016
    Inventors: Richard DiDomizio, Anne O'Dell Knight, Laura Cerully Dial, Shenyan Huang, Michael Francis Xavier Gigliotti, JR.
  • Publication number: 20160288266
    Abstract: A method of making a component includes depositing a metallic powder on a workplane; directing a beam from a directed energy source to fuse the powder in a pattern corresponding to a cross-sectional layer of the component; repeating in a cycle the steps of depositing and fusing to build up the component in a layer-by layer fashion; and during the cycle of depositing and melting, using an external heat control apparatus separate from the directed energy source to maintain a predetermined temperature profile of the component, such that the resulting component has a directionally-solidified or single-crystal microstructure.
    Type: Application
    Filed: November 12, 2014
    Publication date: October 6, 2016
    Inventors: Todd Jay Rockstroh, Michael Francis Xavier Gigliotti, William Thomas Carter, David Henry Abbott, Rajendra Machukar KELKAR