Patents by Inventor Michael Frederick Eilenberg

Michael Frederick Eilenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10307272
    Abstract: A model-based neuromechanical controller for a robotic limb having at least one joint includes a finite state machine configured to receive feedback data relating to the state of the robotic limb and to determine the state of the robotic limb, a muscle model processor configured to receive state information from the finite state machine and, using muscle geometry and reflex architecture information and a neuromuscular model, to determine at least one desired joint torque or stiffness command to be sent to the robotic limb, and a joint command processor configured to command the biomimetic torques and stiffnesses determined by the muscle model processor at the robotic limb joint. The feedback data is preferably provided by at least one sensor mounted at each joint of the robotic limb. In a preferred embodiment, the robotic limb is a leg and the finite state machine is synchronized to the leg gait cycle.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 4, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Hartmut Geyer, Michael Frederick Eilenberg
  • Patent number: 9975249
    Abstract: A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: May 22, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ken Endo, Pavitra Krishnaswamy, Jared Markowitz, Michael Frederick Eilenberg, Jing Wang
  • Publication number: 20170049587
    Abstract: A model-based neuromechanical controller for a robotic limb having at least one joint includes a finite state machine configured to receive feedback data relating to the state of the robotic limb and to determine the state of the robotic limb, a muscle model processor configured to receive state information from the finite state machine and, using muscle geometry and reflex architecture information and a neuromuscular model, to determine at least one desired joint torque or stiffness command to be sent to the robotic limb, and a joint command processor configured to command the biomimetic torques and stiffnesses determined by the muscle model processor at the robotic limb joint. The feedback data is preferably provided by at least one sensor mounted at each joint of the robotic limb. In a preferred embodiment, the robotic limb is a leg and the finite state machine is synchronized to the leg gait cycle.
    Type: Application
    Filed: November 3, 2016
    Publication date: February 23, 2017
    Inventors: Hugh M. Herr, Hartmut Geyer, Michael Frederick Eilenberg
  • Patent number: 9539117
    Abstract: A model-based neuromechanical controller for a robotic limb having at least one joint includes a finite state machine configured to receive feedback data relating to the state of the robotic limb and to determine the state of the robotic limb, a muscle model processor configured to receive state information from the finite state machine and, using muscle geometry and reflex architecture information and a neuromuscular model, to determine at least one desired joint torque or stiffness command to be sent to the robotic limb, and a joint command processor configured to command the biomimetic torques and stiffnesses determined by the muscle model processor at the robotic limb joint. The feedback data is preferably provided by at least one sensor mounted at each joint of the robotic limb. In a preferred embodiment, the robotic limb is a leg and the finite state machine is synchronized to the leg gait cycle.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: January 10, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Hartmut Geyer, Michael Frederick Eilenberg
  • Publication number: 20160207201
    Abstract: A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
    Type: Application
    Filed: December 22, 2015
    Publication date: July 21, 2016
    Inventors: Hugh M. Herr, Ken Endo, Pavitra Krishnaswamy, Jared Markowitz, Michael Frederick Eilenberg, Jing Wang
  • Patent number: 9221177
    Abstract: A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: December 29, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ken Endo, Pavitra Krishnaswamy, Jared Markowitz, Michael Frederick Eilenberg, Jing Wang
  • Patent number: 8864846
    Abstract: A model-based neuromechanical controller for a robotic limb having at least one joint includes a finite state machine configured to receive feedback data relating to the state of the robotic limb and to determine the state of the robotic limb, a muscle model processor configured to receive state information from the finite state machine and, using muscle tendon lever arm and muscle tendon length equations and reflex control equations in a neuromuscular model, to determine at least one desired joint torque or stiffness command to be sent to the robotic limb, and a joint command processor configured to command the biomimetic torques and stiffnesses determined by the muscle model processor at the robotic limb joint. The feedback data is preferably provided by at least one sensor mounted at each joint of the robotic limb. In a preferred embodiment, the robotic limb is a leg and the finite state machine is synchronized to the leg gait cycle.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: October 21, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Hartmut Geyer, Michael Frederick Eilenberg
  • Publication number: 20130310979
    Abstract: A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
    Type: Application
    Filed: April 18, 2013
    Publication date: November 21, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Ken Endo, Pavitra Krishnaswamy, Jared Markowitz, Michael Frederick Eilenberg, Jing Wang
  • Publication number: 20100324699
    Abstract: A model-based neuromechanical controller for a robotic limb having at least one joint includes a finite state machine configured to receive feedback data relating to the state of the robotic limb and to determine the state of the robotic limb, a muscle model processor configured to receive state information from the finite state machine and, using muscle geometry and reflex architecture information and a neuromuscular model, to determine at least one desired joint torque or stiffness command to be sent to the robotic limb, and a joint command processor configured to command the biomimetric torques and stiffnesses determined by the muscle model processor at the robotic limb joint. The feedback data is preferably provided by at least one sensor mounted at each joint of the robotic limb. In a preferred embodiment, the robotic limb is a leg and the finite state machine is synchronized to the leg gait cycle.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 23, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Hugh M. Herr, Hartmut Geyer, Michael Frederick Eilenberg