Patents by Inventor Michael G. Finley

Michael G. Finley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6486528
    Abstract: The present invention is a method and apparatus for programming a stack of segments wherein each segment includes a plurality of die which are interconnected through metal interconnects patterned on the surface of each segment. Once the segments are arranged into a stack, the stack is connected to external circuits and each segment is addressed through control lines. Electrically conductive fuses on the segments are used as an interface between the control lines and the die. Segment level programming is performed on each segment by opening the conductive fuses on the segments in a predetermined pattern in order to route the control lines to each segment such that segments are uniquely addressed. After segment level programming, circuit board programming is performed so that any defective die found in the stack is logically replaced with replacement die in the stack.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: November 26, 2002
    Assignee: Vertical Circuits, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 6188126
    Abstract: A method and apparatus for vertically interconnecting stacks of silicon segments. Each segment, includes a plurality of adjacent die on a semiconductor wafer. The plurality of die on a segment are interconnected on the segment using one or more layers of metal interconnects which extend to all four sides of the segment to provide edge bonding pads for external electrical connection points. After the die are interconnected, each segment is cut from the backside of the wafer using a bevel cut to provide four inwardly sloping edge walls on each of the segments. After the segments are cut from the wafer, the segments are placed on top of one another to form a stack. Vertically adjacent segments in the stack are electrically interconnected by applying electrically conductive epoxy to all four sides of the stack.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: February 13, 2001
    Assignee: Cubic Memory Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 6134118
    Abstract: A method and apparatus for producing a multichip package comprising semiconductor chip and a substrate. The semiconductor chip includes conventional inner bond pads that are rerouted to other areas on the chip to facilitate connection with the substrate. The inner bonds are rerouted by covering the chip with a first insulation layer and opening the first insulation layer over the inner bond pads. A metal layer is then disposed over the first insulation layer in contact with the inner bond pads. A second insulation layer is disposed over the metal layer, and the second insulation layer is opened to expose selected portions of the metal layer to form external connection points. Electrically conductive epoxy is then disposed between the external connection points of the semiconductor chip and the terminals of the substrate, thereby electrically connecting the semiconductor chip to the substrate.
    Type: Grant
    Filed: April 3, 1997
    Date of Patent: October 17, 2000
    Assignee: Cubic Memory Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5994170
    Abstract: The present invention is a method and apparatus for programming a stack of segments wherein each segment includes a plurality of die which are interconnected through metal interconnects patterned on the surface of each segment. Once the segments are arranged into a stack, the stack is connected to external circuits and each segment is addressed through control lines. Electrically conductive fuses on the segments are used as an interface between the control lines and the die. Segment level programming is performed on each segment by opening the conductive fuses on the segments in a predetermined pattern in order to route the control lines to each segment such that segments are uniquely addressed. After segment level programming, circuit board programming is performed so that any defective die found in the stack is logically replaced with replacement die in the stack.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: November 30, 1999
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5936302
    Abstract: The present invention is a method and apparatus for programming a stack of segments wherein each segment includes a plurality of die which are interconnected through metal interconnects patterned on the surface of each segment. Once the segments are arranged into a stack, the stack is connected to external circuits and each segment is addressed through control lines. Electrically conductive fuses on the segments are used as an interface between the control lines and the die. Segment level programming is performed on each segment by opening the conductive fuses on the segments in a predetermined pattern in order to route the control lines to each segment such that segments are uniquely addressed. After segment level programming, circuit board programming is performed so that any defective die found in the stack is logically replaced with replacement die in the stack.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: August 10, 1999
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5837566
    Abstract: A method and apparatus for vertically interconnecting stacks of silicon segments. Each segment includes a plurality of adjacent die on a semiconductor wafer. The plurality of die on a segment are interconnected on the segment using one or more layers of metal interconnects which extend to all four sides of the segment to provide edge bonding pads for external electrical connection points. After the die are interconnected, each segment is cut from the backside of the wafer using a bevel cut to provide four inwardly sloping edge walls on each of the segments. After the segments are cut from the wafer, the segments are placed on top of one another to form a stack. Vertically adjacent segments in the stack are electrically interconnected by applying electrically conductive epoxy to all four sides of the stack.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: November 17, 1998
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5698895
    Abstract: The present invention is a method and apparatus for programming a stack of segments wherein each segment includes a plurality of die which are interconnected through metal interconnects patterned on the surface of each segment Once the segments are arranged into a stack, the stack is connected to external circuits and each segment is addressed through control lines. Electrically conductive fuses on the segments are used as an interface between the control lines and the die. Segment level programming is performed on each segment by opening the conductive fuses on the segments in a predetermined pattern in order to route the control lines to each segment such that segments are uniquely addressed. After segment level programming, circuit board programming is performed so that any defective die found in the stack is logically replaced with replacement die in the stack.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: December 16, 1997
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5675180
    Abstract: A method and apparatus for vertically interconnecting stacks of silicon segments. Each segment includes a plurality of adjacent die on a semiconductor wafer. The plurality of die on a segment are interconnected on the segment using one or more layers of metal interconnects which extend to all four sides of the segment to provide edge bonding pads for external electrical connection points. After the die are interconnected, each segment is cut from the backside of the wafer using a bevel cut to provide four inwardly sloping edge walls on each of the segments. After the segments are cut from the wafer, the segments are placed on top of one another to form a stack. Vertically adjacent segments in the stack are electrically interconnected by applying electrically conductive epoxy to all four sides of the stack.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: October 7, 1997
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5661087
    Abstract: A method and apparatus for vertically interconnecting stacks of silicon segments. Each segment includes a plurality of adjacent die on a semiconductor wafer. The plurality of die on a segment are interconnected on the segment using one or more layers of metal interconnects which extend to all four sides of the segment to provide edge bonding pads for external electrical connection points. After the die are interconnected, each segment is cut from the backside of the wafer using a bevel cut to provide four inwardly sloping edge walls on each of the segments. After the segments are cut from the wafer, the segments are placed on top of one another to form a stack. Vertically adjacent segments in the stack are electrically interconnected by applying electrically conductive epoxy to all four sides of the stack.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 26, 1997
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter
  • Patent number: 5657206
    Abstract: A method and apparatus for producing a multichip package comprising semiconductor chip and a substrate. The semiconductor chip includes conventional inner bond pads that are rerouted to other areas on the chip to facilitate connection with the substrate. The inner bonds are rerouted by covering the chip with a first insulation layer and opening the first insulation layer over the inner bond pads. A metal layer is then disposed over the first insulation layer in contact with the inner bond pads. A second insulation layer is disposed over the metal layer, and the second insulation layer is opened to expose selected portions of the metal layer to form external connection points. Electrically conductive epoxy is then disposed between the external connection points of the semiconductor chip and the terminals of the substrate, thereby electrically connecting the semiconductor chip to the substrate.
    Type: Grant
    Filed: January 19, 1995
    Date of Patent: August 12, 1997
    Assignee: Cubic Memory, Inc.
    Inventors: David V. Pedersen, Michael G. Finley, Kenneth M. Sautter