Patents by Inventor Michael G. Harrison

Michael G. Harrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7998822
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 16, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora
  • Publication number: 20090093108
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora
  • Patent number: 7446006
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora
  • Patent number: 5601674
    Abstract: A method for making an environmentally stable, fiber reinforced ceramic matrix composite member includes use as a bonding agent of a ceramic precursor which transforms upon heating to a ceramic phase. The ceramic phase bonds together discontinuous material comprising ceramic particles, and reinforcing fibers at a relatively low processing temperature.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 11, 1997
    Assignee: General Electric Company
    Inventors: Andrew Szweda, Michael L. Millard, Michael G. Harrison
  • Patent number: 5488017
    Abstract: A method for making an environmentally stable, fiber reinforced ceramic matrix composite member includes use as a bonding agent of a ceramic precursor which transforms upon heating to a ceramic phase. The ceramic phase bonds together discontinuous material comprising ceramic particles, and reinforcing fibers at a relatively low processing temperature.
    Type: Grant
    Filed: November 16, 1994
    Date of Patent: January 30, 1996
    Assignee: General Electric Company
    Inventors: Andrew Szweda, Michael L. Millard, Michael G. Harrison
  • Patent number: 5306554
    Abstract: A method of making a consolidated, reinforced composite member from a matrix mixture including a consolidation shrinkable discontinuous ceramic material, for example ceramic particles, and a selected amount of a particulate inorganic filler which will exhibit net expansion relative to the discontinuous material, the mixture being interspersed about reinforcing fibers. Subsequent consolidation of a preform of such materials can be conducted substantially at ambient pressure, without application of additional pressure, to provide an improved reinforced composite article.
    Type: Grant
    Filed: April 6, 1992
    Date of Patent: April 26, 1994
    Assignee: General Electric Company
    Inventors: Michael G. Harrison, Michael L. Millard, Andrew Szweda
  • Patent number: 5249836
    Abstract: A rear air deflector includes a shield which is mounted directly to a vehicle using expandable insert style fasteners. The shield is spaced apart from the window frame, except at the ends of the shield which engage the frame. The shield is concave substantially along its length, though the ends are flattened for mating engagement with the window frame. The opposite end portions of the shield have a reverse-curve profile such that the ends are parallel to the window frame surface for mating engagement with the surface. The direct mounting of the deflector to the vehicle eliminates the need for mounting brackets.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: October 5, 1993
    Assignee: DFM Corporation
    Inventors: John M. Stanesic, Michael G. Harrison
  • Patent number: 5190820
    Abstract: An oxide barrier coating for a reinforcing fiber is provided with a preselected microstructure and thickness through control of the concentration of metal salt in heat decomposable form as a precursor of metal oxide. In one form, the salt is a metal oxyhalide salt such as zirconium oxyhalide or hafnium oxyhalide. Fibers, such as ones of alumina, aluminasilicate or silicon carbide, having the coating of the invention are especially useful as reinforcing fibers for reinforced ceramic matrix composites.
    Type: Grant
    Filed: March 1, 1991
    Date of Patent: March 2, 1993
    Assignee: General Electric Company
    Inventors: Michael L. Millard, Michael G. Harrison, Andrew Szweda
  • Patent number: 5024859
    Abstract: An oxide barrier coating for reinforcing fiber is provided with a preselected microstructure and thickness through control of the concentration of metal salt in heat decomposable form as a precursor of metal oxide. In one form, the salt is a metal oxyhalide salt such as zirconium oxyhalide or halfnium oxyhalide. Fibers, such as ones of alumina, aluminasilicate or silicon carbide, having the coating of the invention are especially useful as reinforcing fibers for reinforced ceramic matrix composites.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: June 18, 1991
    Assignee: General Electric Company
    Inventors: Michael L. Millard, Michael G. Harrison, Andrew Szweda