Patents by Inventor Michael G. Moebius

Michael G. Moebius has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220059950
    Abstract: An antenna system has a two-dimensional field of view, yet can be implemented on a surface, such as on electronic or photonic integrated circuits. The antenna system includes an array of antennas disposed in a predetermined non-linear pattern and a two-dimensional beamforming network (BFN). The antenna system can be steered/selectively beamformed in two dimensions through beam port selection. The beamforming network is disposed entirely on a single first surface. The beamforming network has a one-dimensional array-side interface disposed on the first surface and a one-dimensional beam-side interface disposed on the first surface. The antennas of the array of antennas are individually communicably coupled to the array-side interface. Segments of the beam-side interface map to respective pixels in the two-dimensional field of view.
    Type: Application
    Filed: August 20, 2021
    Publication date: February 24, 2022
    Inventors: Julian A. Brown, Benjamin F. Lane, Hannah Clevenson, Lucas D. Benney, Michael G. Moebius, Robin M. A. Dawson, Steven J. Spector
  • Patent number: 11243450
    Abstract: A light field generator system including a leaky-mode SAW modulator is disclosed. The modulator incorporates at least one optical power component, such as a concave mirror or volume grating having a non-zero diopter rating. In some embodiments, the system incorporates the at least one optical power component by embedding the optical power component within a substrate of the SAW modulator and/or by placing the optical power component upon a surface of the SAW modulator.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 8, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Gregg E. Favalora, Michael G. Moebius, Steven J. Byrnes
  • Patent number: 11237335
    Abstract: MEMS-actuated optical switches can be implemented on photonic chips. These switches are compact, essentially planar, simple to implement and include only one moving MEMS component per switch. The switches exhibit low optical loss, require low power to operate, and are simple to control and easy to integrate with other optical devices. Each switch has two optical waveguides that are optically coupled in an ON switch state and not coupled in an OFF switch state. An end or a medial section of one of the two waveguides may translate between the ON and OFF states to affect the coupling. Alternatively, a coupling frustrator may translate between the ON and OFF states to affect the coupling.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 1, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Jonathan J. Bernstein
  • Publication number: 20210349186
    Abstract: A LiDAR system emits single mode light from a photonic integrated circuit (PIC) and is capable of receiving a different mode light, or multiple modes of light, into the PIC. Objects in the LiDAR's field of view may reflect light with a mode different from the mode of the light that illuminated the objects. Thus, in some embodiments, a single-mode optical waveguide, a single-mode-multi-mode optical junction, a multi-mode optical waveguide and an array of optical emitters on the PIC are configured to emit into free space light of a single mode from each optical emitter of the array of optical emitters. The multi-mode optical waveguide and the array of optical emitters are configured to receive from the free space light of a mode different from the single mode, or multiple modes, and to couple the light of the different mode or multiple modes into the multi-mode optical waveguide.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 11, 2021
    Inventors: Steven J. Byrnes, Michael G. Moebius, Steven J. Spector
  • Publication number: 20210341585
    Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a birefringent prism and a lens. The LiDAR system may also include a mask placed in the light path between the birefringent prism and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 4, 2021
    Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
  • Patent number: 11119383
    Abstract: Acousto-optical modulators, such as a SAW modulators, with telescope arrays and superimposed volume gratings for light field generation are disclosed. These devices can employ pixelated demagnification and have layers of output optics, such as reflective gratings and/or arrays of transmissive refractive or diffractive lenses that manipulate the light emitted by the SAW modulator. In other cases, superimposed volume gratings are used, in which pixilation occurs in angle space.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: September 14, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Byrnes, Gregg E. Favalora, Ian Ward Frank, Joseph J. Register, Michael G. Moebius
  • Patent number: 11092427
    Abstract: A system and method for metrology and profilometry using a light field generator are disclosed. For this purpose, a system such as an optical analysis system scans a sample using light, and detects light reflected off a sample in various ways. The system operates different operational modes including a backscatter intensity, a triangulation, and an interferometric mode. For this purpose, the optical analysis system includes one or more optical angle modulation systems, such as surface acoustic wave (SAW) modulators, that emit light, a sample holder, and a scanning system that scans the one or more SAW modulators relative to the sample holder. The system performs tomographic reconstructions of information generated by the scans to create 3D maps/volume datasets of the sample.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 17, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Byrnes, Jeffrey A. Korn, Gregg E. Favalora, Juha-Pekka J. Laine, Michael G. Moebius
  • Publication number: 20210231780
    Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a beamsplitter and a lens. The LiDAR system may also include a mask placed in the light path between the beamsplitter and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 29, 2021
    Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
  • Patent number: 11048053
    Abstract: An optical system includes a laser source that provides a beam of light, a photonic integrated circuit (PIC) with an input aperture, and an alignment fixture that has at least one actuator. The alignment fixture may be mounted on the PIC. The optical system is aligned such that the beam of light travels from the laser source to the alignment fixture and from the alignment fixture to the input aperture of the PIC. The alignment fixture can move in at least one direction upon actuation of the at least one actuator to adjust coupling between the laser source and the PIC. The at least one actuator may be a micro-electro-mechanical system (MEMS) structure actuated by an electrical signal.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 29, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Sean P. O'Connor
  • Publication number: 20210157067
    Abstract: An optical system includes a laser source that provides a beam of light, a photonic integrated circuit (PIC) with an input aperture, and an alignment fixture that has at least one actuator. The alignment fixture may be mounted on the PIC. The optical system is aligned such that the beam of light travels from the laser source to the alignment fixture and from the alignment fixture to the input aperture of the PIC. The alignment fixture can move in at least one direction upon actuation of the at least one actuator to adjust coupling between the laser source and the PIC. The at least one actuator may be a micro-electro-mechanical system (MEMS) structure actuated by an electrical signal.
    Type: Application
    Filed: November 27, 2019
    Publication date: May 27, 2021
    Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Sean P. O'Connor
  • Patent number: 10955529
    Abstract: A monostatic optical system adaptable for use as a circulator in a LiDAR system wherein the monostatic optical system includes a photonic integrated circuit and a first light detector. The photonic integrated circuit includes a nonlinear optical device. For example, the device may be a ring resonator or a Mach-Zehnder interferometer. Transmitted light pulses are of sufficient power to alter the optical characteristics of the nonlinear optical device, whereas received reflected light is of low power thereby traveling on a different path to the first light detector. A feedback monitor and tuner may be included to tune the optical characteristics of the nonlinear optical device.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: March 23, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Spector, Michael G. Moebius
  • Patent number: 10935868
    Abstract: A light steeling system and method for diffractive steering of electromagnetic radiation such as visible light is disclosed. Embodiments of the light steering system include leaky-mode SAW modulators as light modulator devices. The SAW modulators preferably include reflective diffractive gratings. The gratings are mounted to/patterned upon an exit face that opposes an exit surface of the SAW modulator, in one example. Steering of light signals emitted from the SAW modulators in these systems can be accomplished by varying wavelength of light signals introduced to the SAW modulators, and/or by varying frequency of RF drive signals applied to the SAW modulators. In addition, light field generators that incorporate SAW modulators of the proposed light steering system within displays of the light field generators are also disclosed.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: March 2, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Byrnes, Gregg E. Favalora, Ian Ward Frank, Anthony Kopa, Jeffrey A. Korn, Michael G. Moebius
  • Publication number: 20210033943
    Abstract: An electro-holographic light field generator device is disclosed. The light field generator device has an optical substrate with a waveguide face and an exit face. One or more surface acoustic wave (SAW) optical modulator devices are included within each light field generator device. The SAW devices each include a light input, a waveguide, and a SAW transducer, all configured for guided mode confinement of input light within the waveguide. A leaky mode deflection of a portion of the waveguided light, or diffractive light, impinges upon the exit face. Multiple output optics at the exit face are configured for developing from each of the output optics a radiated exit light from the diffracted light for at least one of the waveguides. An RF controller is configured to control the SAW devices to develop the radiated exit light as a three-dimensional output light field with horizontal parallax and compatible with observer vertical motion.
    Type: Application
    Filed: October 5, 2020
    Publication date: February 4, 2021
    Inventors: Ian W. Frank, Steven J. Byrnes, Juha-Pekka J. Laine, Gregg E. Favalora, Joseph J. Register, Dennis M. Callahan, Michael G. Moebius
  • Patent number: 10908372
    Abstract: Embodiments described herein improve the performance of active sensing systems, such as LiDAR systems, and enable detection of objects closer to the system's sensor. Illustrative embodiments enable spatial separation of the excitation and return signal on a photonic integrated chip (“PIC”) such that separate waveguides can be used for the excitation and return signals, enabling isolation of the system's detectors from the excitation source without the use of a splitter or circulator. For example, preferred embodiments avoid loss due to the use of splitters and the need for gating the detector, and are desirably compatible with chip-scale systems. Moreover, illustrative embodiments enable keeping the excitation and detection paths on the same PIC (e.g. in an interleaved configuration), which helps keep the system more compact and avoid issues introduced by parallax.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: February 2, 2021
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Spector
  • Patent number: 10838150
    Abstract: A coupling interface arrangement is described for a photonic integrated circuit (PIC) device. The PIC includes an interface coupling surface having optical grating elements arranged to form optical output locations that produce corresponding light output beams. A coupling lens couples the light output beams into a conjugate plane at a far-field scene characterized by one or more optical aberrations that degrade optical resolution of the light outputs. The optical grating elements are configured to correct for the one or more optical aberrations.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: November 17, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Byrnes, Steven J. Spector, Francis J. Rogomentich, Matthew A. Sinclair
  • Patent number: 10837755
    Abstract: A multi-beam optical phased array on a single planar waveguide layer or a small number of planar waveguide layers enables building an optical sensor that performs much like a significantly larger telescope. Imaging systems use planar waveguides created using micro-lithographic techniques. These imagers are variants of “phased arrays,” common and familiar from microwave radar applications. However, there are significant differences when these same concepts are applied to visible and infrared light.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: November 17, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Benjamin F. Lane, Steven J. Spector, Alan X. Zhou, Julian A. Brown, Michael G. Moebius
  • Patent number: 10823913
    Abstract: MEMS-actuated optical switches can be implemented on photonic chips. These switches are compact, essentially planar, simple to implement and include only one moving MEMS component per switch. The switches exhibit low optical loss, require low power to operate, and are simple to control and easy to integrate with other optical devices. Each switch has two optical waveguides that are optically coupled in an ON switch state and not coupled in an OFF switch state. An end or a medial section of one of the two waveguides may translate between the ON and OFF states to affect the coupling. Alternatively, a coupling frustrator may translate between the ON and OFF states to affect the coupling.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: November 3, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Jonathan J. Bernstein
  • Patent number: 10795235
    Abstract: An electro-holographic light field generator device is disclosed. The light field generator device has an optical substrate with a waveguide face and an exit face. One or more surface acoustic wave (SAW) optical modulator devices are included within each light field generator device. The SAW devices each include a light input, a waveguide, and a SAW transducer, all configured for guided mode confinement of input light within the waveguide. A leaky mode deflection of a portion of the waveguided light, or diffractive light, impinges upon the exit face. Multiple output optics at the exit face are configured for developing from each of the output optics a radiated exit light from the diffracted light for at least one of the waveguides. An RF controller is configured to control the SAW devices to develop the radiated exit light as a three-dimensional output light field with horizontal parallax and compatible with observer vertical motion.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: October 6, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Ian W. Frank, Steven J. Byrnes, Juha-Pekka J. Laine, Gregg E. Favalora, Joseph J. Register, Dennis M. Callahan, Michael G. Moebius
  • Patent number: 10731964
    Abstract: A multi-beam optical phased array on a single planar waveguide layer or a small number of planar waveguide layers enables building an optical sensor that performs much like a significantly larger telescope. Imaging systems use planar waveguides created using micro-lithographic techniques. These imagers are variants of “phased arrays,” common and familiar from microwave radar applications. However, there are significant differences when these same concepts are applied to visible and infrared light.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 4, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Benjamin F. Lane, Steven J. Spector, Alan X. Zhou, Julian A. Brown, Michael G. Moebius
  • Patent number: 10684420
    Abstract: A steerable optical transmit and receive terminal includes a MEMS-based N×1 optical switch network. Each optical switch in the optical switch network uses an electrostatic MEMS structure to selectively position a translatable optical grating close to or far from an optical waveguide. In the close (“ON”) position, light couples between the translatable optical grating and the optical waveguide, whereas in the far (“OFF”) position, no appreciable light couples between the translatable optical grating and the optical waveguide. The translatable optical grating is disposed at or near a surface of the optical switch network. Thus, the translatable optical grating emits light into, or receives light from, free space. The steerable optical transmit and receive terminal also includes a lens and can steer a free space optical beam in a direction determined by which port of the N×1 optical switch network is ON.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: June 16, 2020
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Spector, Michael G. Moebius, Benjamin F. Lane, Gregg E. Favalora