Patents by Inventor Michael G. Monroe

Michael G. Monroe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230303884
    Abstract: A method for forming parts with electrically conductive features includes applying a layer of thermoplastic polymer powder particles in a powder bed and selectively applying an aqueous pretreat composition including a metal chloride salt on a portion of the layer. A conductive fusing ink including transition metal particles and a dispersing agent is selectively applied onto the applied aqueous pretreat composition on the portion of the layer, wherein the dispersing agent binds to, and passivates surfaces of the transition metal particles. The layer is exposed to electromagnetic radiation to fuse the thermoplastic polymer powder particles in the portion of the layer and sinter the transition metal particles, thereby forming a conductive feature.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Sterling Chaffins, Kevin P. DeKam, Michael G. Monroe
  • Publication number: 20230278101
    Abstract: A three-dimensional printing kit can include a binding agent and a particulate build material. The binding agent can include a binder in an aqueous liquid vehicle. The aqueous liquid vehicle can include an organic co-solvent with a boiling point from about 150° C. to about 300° C. The particulate build material can include from about 80 wt % to 100 wt % stainless steel particles that can have an average particle size from about 3 ?m to about 200 ?m. About 0.02 wt % to about 0.3 wt % of a total weight of the stainless steel particles can be an oxidation barrier formed on surfaces of the stainless steel particles.
    Type: Application
    Filed: July 1, 2020
    Publication date: September 7, 2023
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: VLADEK KASPERCHIK, NATALIE HARVEY, MICHAEL G MONROE
  • Patent number: 11685115
    Abstract: In one example in accordance with the present disclosure, an additive manufacturing module is described. The additive manufacturing module includes an agent distributor to selectively distribute a fabrication agent onto layers of build material. The agent distributor includes at least one fluidic ejection die. Each fluidic ejection die includes a plurality of nozzles arranged along a die length and a die width, the plurality of nozzles arranged such that, for each set of neighboring nozzles, a respective subset of each set of neighboring nozzles are positioned at different die width positions along the width of the fluidic ejection die. The fluidic ejection die also includes, for each respective nozzle of the plurality of nozzles, a respective ejection chamber fluidically coupled to the respective nozzle and for each respective ejection chamber, at least one respective fluid feed hole fluidically coupled to the respective ejection chamber.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 27, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: James R Przybyla, Jason Hower, Michael G Monroe, Galen P Cook
  • Patent number: 11673330
    Abstract: A metallic build material granule includes a plurality of primary metal particles and a temporary binder agglomerating the plurality of primary metal particles together. The primary metal particles have a primary metal particle size ranging from about the 1 ?m to about 20 ?m. The primary metal particles are non-shape memory metal particles, and the metallic build material granule excludes shape memory metal particles.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: June 13, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Michael G. Monroe, Johnathon Holroyd
  • Publication number: 20230091752
    Abstract: A 3D printer is disclosed herein. The 3D printer comprises a build material distributor to generate layers of a build material in a spreading direction along a spreading axis; a resonator mounted on the build material distributor to vibrate the build material distributor along the spreading axis at a frequency; and a controller. The controller is to control the resonator to vibrate the build material distributor at the frequency while controlling the build material distributor to spread a volume of build material over a platform to generate a layer of build material.
    Type: Application
    Filed: July 28, 2020
    Publication date: March 23, 2023
    Inventors: David R. Otis, Jr., Kevin E. Swier, Michael G. Monroe, Daniel Mosher, Douglas Pederson
  • Patent number: 11602502
    Abstract: In an example of a three-dimensional (3D) printing method for forming a pharmaceutical tablet, build material granules are applied. Each of the build material granules includes a plurality of excipient particles, wherein at least one of the plurality of excipient particles is a latent binder. Pressure is applied to the build material granules. An activation solvent is selectively applied on at least a portion of the pressed build material granules. An active pharmaceutical ingredient formulation including an active pharmaceutical ingredient is selectively applied on the at least the portion of the pressed build material granules. The activation solvent is evaporated.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: March 14, 2023
    Assignee: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Vladek Kasperchik, Michael G. Monroe, Michael J. Regan
  • Patent number: 11534824
    Abstract: An example of a composition includes a host metal present in an amount ranging from about 95.00 weight percent to about 99.99 weight percent, based on a total weight of the composition. A flow additive is present in an amount ranging from about 0.01 weight percent to about 5.00 weight percent, based on the total weight of the composition. The flow additive consists of a metal containing compound that is reducible to an elemental metal in a reducing environment at a reducing temperature less than or equal to a sintering temperature of the host metal. The elemental metal is capable of being incorporated into a bulk metal phase of the host metal in a final metal object. The composition is spreadable, having a Hausner Ratio less than 1.25.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 27, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, James McKinnell, Michael G. Monroe, Jason Hower
  • Publication number: 20220297182
    Abstract: In a three-dimensional (3D) printing method example, a metallic build material is applied. A binder fluid is selectively applied on at least a portion of the metallic build material. The binder fluid includes a liquid vehicle and polymer particles dispersed in the liquid vehicle. The application of the metallic build material and the selective application of the binder fluid are repeated to create a patterned green part. The patterned green part is heated to at about a melting point of the polymer particles to activate the binder fluid and create a cured green part. The cured green part is heated to a thermal decomposition temperature of the polymer particles to create an at least substantially polymer-free gray part. The at least substantially polymer-free gray part is heated to a sintering temperature to form a metallic part.
    Type: Application
    Filed: June 10, 2022
    Publication date: September 22, 2022
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, Michael G. Monroe, David Michael Ingle
  • Publication number: 20220267620
    Abstract: A multi-fluid kit for three-dimensional printing can include a wetting agent and a binding agent. The wetting agent can include from 0 wt % to about 49.8 wt % water, from about 0.5 wt % to about 30 wt % film-forming organic solvent that can have a boiling point from greater than about 100° C. to about 350° C., and from about 30 wt % to about 99.5 wt % amphiphilic solvent that can have a boiling point from about 45° C. to less than about 100° C. The amphiphilic solvent can be water-miscible and can be present in the wetting agent at a greater concentration than the water and at a greater concentration than the film-forming solvent. The binding agent can include from about 2 wt % to about 30 wt % of a polymer binder dispersed in an aqueous liquid vehicle.
    Type: Application
    Filed: September 5, 2019
    Publication date: August 25, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Jennifer Wu, Michael G. Monroe
  • Patent number: 11389867
    Abstract: In a three-dimensional (3D) printing method example, a metallic build material is applied. A binder fluid is selectively applied on at least a portion of the metallic build material. The binder fluid includes a liquid vehicle and polymer particles dispersed in the liquid vehicle. The application of the metallic build material and the selective application of the binder fluid are repeated to create a patterned green part. The patterned green part is heated to at about a melting point of the polymer particles to activate the binder fluid and create a cured green part. The cured green part is heated to a thermal decomposition temperature of the polymer particles to create an at least substantially polymer-free gray part. The at least substantially polymer-free gray part is heated to a sintering temperature to form a metallic part.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 19, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, Michael G. Monroe, David Michael Ingle
  • Publication number: 20210362243
    Abstract: An example three-dimensional printing method is described, comprising selectively depositing droplets of a liquid agent on a layer of build material, by depositing liquid agent on the layer of build material from a first distance above the layer, for example on a first part of the layer, and depositing liquid agent on the layer of build material from a second distance above the layer, for example on a second part of the layer. An example 3D printer is also described.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 25, 2021
    Inventors: Sergio Puigardeu Aramendia, Michael G. Monroe, Jason C. Hower
  • Publication number: 20210331246
    Abstract: In an example implementation, a 3D printing system to remove components of a liquid agent includes a permeable surface. Build material formed on the permeable surface can be heated to generate vapor from a component of the liquid agent. The vapor can be drawn out of the build material through the permeable surface.
    Type: Application
    Filed: June 5, 2018
    Publication date: October 28, 2021
    Inventors: Jason Hower, Michael G. Monroe, James E Fischer, Andrew L Van Brocklin, Ravi Prasad
  • Publication number: 20210323228
    Abstract: In one example in accordance with the present disclosure, an additive manufacturing module is described. The additive manufacturing module includes an agent distributor to selectively distribute a fabrication agent onto layers of build material. The agent distributor includes at least one fluidic ejection die. Each fluidic ejection die includes a plurality of nozzles arranged a long a die length and a die width, the plurality of nozzles arranged such that, for each set of neighboring nozzles, a respective subset of each set of neighboring nozzles are positioned at different die width positions along the width of the fluidic ejection die. The fluidic ejection die also includes, for each respective nozzle of the plurality of nozzles, a respective ejection chamber fluidically coupled to the respective nozzle and for each respective ejection chamber, at least one respective fluid feed hole fluidically coupled to the respective ejection chamber.
    Type: Application
    Filed: March 12, 2018
    Publication date: October 21, 2021
    Inventors: James R Przybyla, Jason Hower, Michael G Monroe, Galen P Cook
  • Patent number: 11072088
    Abstract: According to an example, a three-dimensional (3D) printer may include a spreader to spread build material granules into a layer on a build area platform, a pressing die positioned above the layer of spread build material granules, in which the pressing die is to apply pressure onto the layer of build material granules to fragment the build material granules into primary particles to increase the density of the layer of build material granules, and a printhead to selectively deposit a fusing agent between the primary particles of the spread layer of build material granules.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 27, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael G Monroe, Vladek Kasperchik, Pavel Kornilovich, David A Champion
  • Publication number: 20210206081
    Abstract: A material development tool includes a first plate and a second plate. The first plate has an indentation of a predetermined depth. The second plate having an opening for receiving build material when placed on the first plate and is removable from the first plate. A recoater is used to move and spread the build material within the indentation of the first plate.
    Type: Application
    Filed: March 14, 2017
    Publication date: July 8, 2021
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Michael G. MONROE, Pavel KORNILOVICH, Andrew QUEISSER, Glenn HADDICK
  • Publication number: 20210197257
    Abstract: A metallic build material granule includes a plurality of primary metal particles and a temporary binder agglomerating the plurality of primary metal particles together. The primary metal particles have a primary metal particle size ranging from about the 1 ?m to about 20 ?m. The primary metal particles are non-shape memory metal particles, and the metallic build material granule excludes shape memory metal particles.
    Type: Application
    Filed: April 28, 2017
    Publication date: July 1, 2021
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Vladek KASPERCHIK, Michael G. Monroe, Johnathon HOLROYD
  • Publication number: 20210197269
    Abstract: In a three-dimensional (3D) printing method example, a metallic build material is applied. A binder fluid is selectively applied on at least a portion of the metallic build material. The binder fluid includes a liquid vehicle and polymer particles dispersed in the liquid vehicle. The application of the metallic build material and the selective application of the binder fluid are repeated to create a patterned green part. The patterned green part is heated to at about a melting point of the polymer particles to activate the binder fluid and create a cured green part. The cured green part is heated to a thermal decomposition temperature of the polymer particles to create an at least substantially polymer-free gray part. The at least substantially polymer-free gray part is heated to a sintering temperature to form a metallic part.
    Type: Application
    Filed: February 24, 2017
    Publication date: July 1, 2021
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Vladek KASPERCHIK, Mohammed S. SHAARAWI, Michael G. MONROE, David Michael INGLE
  • Patent number: 11007712
    Abstract: In a three-dimensional printing method example, a build material, including an epoxy resin powder, is applied. A hardener liquid is selectively applied on at least a portion of the build material. The portion of the build material in contact with the hardener liquid is allowed to cure to form a layer of a 3D part. In another three-dimensional printing method example, a filler build material is applied. A liquid epoxy resin is selectively applied on at least a portion of the filler. A hardener liquid is selectively applied on the at least the portion of the filler. The portion of the filler in contact with the liquid epoxy resin and the hardener liquid is allowed to cure to form a layer of a 3D part.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: May 18, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Qin Liu, Chien-Hua Chen, Michael G. Monroe, Bruce Cowger
  • Publication number: 20210001546
    Abstract: An example of a composition includes a host metal present in an amount ranging from about 95.00 weight percent to about 99.99 weight percent, based on a total weight of the composition. A flow additive is present in an amount ranging from about 0.01 weight percent to about 5.00 weight percent, based on the total weight of the composition. The flow additive consists of a metal containing compound that is reducible to an elemental metal in a reducing environment at a reducing temperature less than or equal to a sintering temperature of the host metal. The elemental metal is capable of being incorporated into a bulk metal phase of the host metal in a final metal object. The composition is spreadable, having a Hausner Ratio less than 1.25.
    Type: Application
    Filed: April 19, 2018
    Publication date: January 7, 2021
    Inventors: Vladek Kasperchik, Mohammed S. Shaarawi, James McKinnell, Michael G. Monroe, Jason Hower
  • Publication number: 20200406351
    Abstract: An example of a composition includes a host metal present in an amount ranging from about 95.00 weight percent to about 99.99 weight percent, based on a total weight of the composition. A flow additive is also present in an amount ranging from about 0.01 weight percent to about 5.00 weight percent, based on the total weight of the composition. The flow additive consists of an organic material that is pyrolyzable at a pyrolysis temperature that is less than a sintering temperature of the host metal. The composition is spreadable, having a Hausner Ratio less than 1.25.
    Type: Application
    Filed: March 15, 2018
    Publication date: December 31, 2020
    Inventors: Vladek Kasperchik, James McKinnell, Mohammed S. Shaarawi, Michael G. Monroe, Jason Hower