Patents by Inventor Michael G. R. Thomson

Michael G. R. Thomson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9612612
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit and a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid. The tunable sector buffer is configured to set latency and slew rate of the clock signal based on an identified resonant or non-resonant mode.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: April 4, 2017
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G. R. Thomson
  • Publication number: 20150234422
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit and a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid. The tunable sector buffer is configured to set latency and slew rate of the clock signal based on an identified resonant or non-resonant mode.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 20, 2015
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G.R. Thomson
  • Patent number: 9058130
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit and a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid. The tunable sector buffer is configured to set latency and slew rate of the clock signal based on an identified resonant or non-resonant mode.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G. R. Thomson
  • Patent number: 9054682
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit, a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid, at least one inductor, at least one tunable resistance switch, and a capacitor network. The tunable sector buffer is programmable to set latency and slew rate of the clock signal. The inductor, tunable resistance switch, and capacitor network are connected between the clock grid and a reference voltage. The at least one tunable resistance switch is programmable to dynamically switch the at least one inductor in or out of the clock distribution to effect at least one resonant mode of operation or a non-resonant mode of operation based on a frequency of the clock signal.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G. R. Thomson
  • Publication number: 20140223210
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit and a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid. The tunable sector buffer is configured to set latency and slew rate of the clock signal based on an identified resonant or non-resonant mode.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G.R. Thomson
  • Publication number: 20140218087
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit, a tunable sector buffer configured to receive the clock signal and provide an output to the clock grid, at least one inductor, at least one tunable resistance switch, and a capacitor network. The tunable sector buffer is programmable to set latency and slew rate of the clock signal. The inductor, tunable resistance switch, and capacitor network are connected between the clock grid and a reference voltage. The at least one tunable resistance switch is programmable to dynamically switch the at least one inductor in or out of the clock distribution to effect at least one resonant mode of operation or a non-resonant mode of operation based on a frequency of the clock signal.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G.R. Thomson
  • Publication number: 20140167832
    Abstract: Described is an integrated circuit having a clock distribution network capable of transitioning from a non-resonant clock mode to a first resonant clock mode Transitions between clock modes or between various resonant clock frequencies are done gradually over a series of clock cycles. In example, when transitioning from a non-resonant clock mode to a first resonant clock mode, a strength of a clock sector driver is reduced over a series of clock cycles, and individual ones of a plurality of resonant switches associated with resonant circuits are modified in coordination with reducing the strength of the clock sector driver.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Bucelot, Alan Drake, Joshua D. Friedrich, Jason D. Hibbeler, Liang-Teck Pang, William R. Reohr, Phillip John Restle, Gregory S. Still, Michael G.R. Thomson
  • Patent number: 8736342
    Abstract: Described is an integrated circuit having a clock distribution network capable of transitioning from a non-resonant clock mode to a first resonant clock mode Transitions between clock modes or between various resonant clock frequencies are done gradually over a series of clock cycles. In example, when transitioning from a non-resonant clock mode to a first resonant clock mode, a strength of a clock sector driver is reduced over a series of clock cycles, and individual ones of a plurality of resonant switches associated with resonant circuits are modified in coordination with reducing the strength of the clock sector driver.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan Drake, Joshua D. Friedrich, Jason D. Hibbeler, Liang-Teck Pang, William R. Reohr, Phillip John Restle, Gregory S. Still, Michael G. R. Thomson
  • Patent number: 8704576
    Abstract: A wide bandwidth resonant clock distribution comprises a clock grid configured to distribute a clock signal to a plurality of components of an integrated circuit, at least one inductor, at least one tunable resistance switch, and a capacitor network. The inductor, tunable resistance switch, and capacitor network are connected between the clock grid and a reference voltage. The at least one tunable resistance switch is programmable to dynamically switch the at least one inductor in or out of the clock distribution to effect at least one resonant mode of operation or a non-resonant mode of operation based on a frequency of the clock signal.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Bucelot, Alan J. Drake, Robert A. Groves, Jason D. Hibbeler, Yong I. Kim, Liang-Teck Pang, William R. Reohr, Phillip J. Restle, Michael G. R. Thomson
  • Patent number: 4588928
    Abstract: An electron emission system includes a high-brightness field-emitter cathode. Advantageously, the tip of the cathode is shaped to minimize structural variations caused by surface tension forces. In addition, an electrode assembly associated with the cathode is designed to establish electric field forces that are opposite and at least approximately equal to the surface tension forces acting on the tip. The electric field forces can be adjusted to establish a highly stable operating condition without altering the value of electron beam energy for which the overall system was designed. Moreover, the current density of the beam at a writing surface can be selectively varied without changing prescribed operating parameters of the cathode. The resulting system is characterized by excellent emission stability, low noise and a useful operating life of at least several thousand hours.
    Type: Grant
    Filed: June 15, 1983
    Date of Patent: May 13, 1986
    Assignee: AT&T Bell Laboratories
    Inventors: Ruichen Liu, Michael G. R. Thomson
  • Patent number: 4393312
    Abstract: For a given resolution or address dimension, the pattern-writing speed of an electron beam exposure system is increased by utilizing a new mode of raster scanning. In the new mode, the writing spot dimensions of the electron beam are varied rapidly during the scan. In an electron column designed for variable-spot raster scanning, an illuminated aperture is demagnified to form the writing spot. By imaging a first aperture upon a second aperture and rapidly deflecting the image of the first aperture, the portion of the second aperture that is illuminated by the electron beam is altered. In that way, the spot size is selectively varied in a high-speed way during the raster scanning process.
    Type: Grant
    Filed: November 29, 1977
    Date of Patent: July 12, 1983
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Robert J. Collier, Michael G. R. Thomson