Patents by Inventor Michael G. Schwartz

Michael G. Schwartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10976292
    Abstract: A sensor module includes a sensor module body, a sensing element within the sensor module body that senses a characteristic of an environment, a breathing element within the sensor module body that allows the sensing element to access the environment, electronics within the sensor module body coupled to the sensing element, and wherein the sensor module body forms a wall of a flame path.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 13, 2021
    Assignee: Rosemount Inc.
    Inventors: Ryan T. Lindsey, Glen R. Edwards, Randon W. Beuc, Michael G. Schwartz
  • Publication number: 20200103386
    Abstract: A sensor module includes a sensor module body, a sensing element within the sensor module body that senses a characteristic of an environment, a breathing element within the sensor module body that allows the sensing element to access the environment, electronics within the sensor module body coupled to the sensing element, and wherein the sensor module body forms a wall of a flame path.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Ryan T. Lindsey, Glen R. Edwards, Randon W. Beuc, Michael G. Schwartz
  • Patent number: 7690902
    Abstract: Melt blown or spun bond nonwoven webs are formed by flowing fiber-forming material through a die cavity having a substantially uniform residence time and then through a plurality of orifices to form filaments, using air or other fluid to attenuate the filaments into fibers and collecting the attenuated fibers as a nonwoven web. Each die orifice receives a fiber-forming material stream having a similar thermal history. The physical or chemical properties of the nonwoven web fibers such as their average molecular weight and polydispersity can be made more uniform. Wide nonwoven webs can be formed by arranging a plurality of such die cavities in a side-by-side relationship. Thicker or multilayered nonwoven webs can be formed by arranging a plurality of such die cavities atop one another.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: April 6, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Stanley C. Erickson, James C. Breister, Michael G. Schwartz, Patrick J. Sager
  • Patent number: 6846450
    Abstract: Melt blown or spun bond nonwoven webs are formed by flowing fiber-forming material through a die cavity having a substantially uniform residence time and then through a plurality of orifices to form filaments, using air or other fluid to attenuate the filaments into fibers and collecting the attenuated fibers as a nonwoven web. Each die orifice receives a fiber-forming material stream having a similar thermal history. The physical or chemical properties of the nonwoven web fibers such as their average molecular weight and polydispersity can be made more uniform. Wide nonwoven webs can be formed by arranging a plurality of such die cavities in a side-by-side relationship. Thicker or multilayered nonwoven webs can be formed by arranging a plurality of such die cavities atop one another.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: January 25, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Stanley C. Erickson, James C. Breister, Michael G. Schwartz, Patrick J Sager
  • Patent number: 6824733
    Abstract: Melt blown nonwoven webs are formed by supplying fiber-forming material to a planetary gear metering pump having a plurality of outlets, flowing fiber-forming material from the pump outlets through a plurality of inlets in one or more die cavities, and meltblowing the fiber-forming material. Each die cavity inlet receives a fiber-forming material stream having a similar thermal history. The physical or chemical properties of the nonwoven web fibers such as their average molecular weight and polydispersity can be made more uniform. Wide nonwoven webs can be formed by arranging a plurality of such die cavities in a side-by-side relationship. Thicker or multilayered nonwoven webs can be formed by arranging a plurality of such die cavities atop one another.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: November 30, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Stanley C. Erickson, James C. Breister, Michael G. Schwartz, Patrick J. Sager
  • Publication number: 20030236046
    Abstract: Melt blown or spun bond nonwoven webs are formed by flowing fiber-forming material through a die cavity having a substantially uniform residence time and then through a plurality of orifices to form filaments, using air or other fluid to attenuate the filaments into fibers and collecting the attenuated fibers as a nonwoven web. Each die orifice receives a fiber-forming material stream having a similar thermal history. The physical or chemical properties of the nonwoven web fibers such as their average molecular weight and polydispersity can be made more uniform. Wide nonwoven webs can be formed by arranging a plurality of such die cavities in a side-by-side relationship. Thicker or multilayered nonwoven webs can be formed by arranging a plurality of such die cavities atop one another.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 25, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Stanley C. Erickson, James C. Breister, Michael G. Schwartz, Patrick J. Sager
  • Publication number: 20030234463
    Abstract: Melt blown nonwoven webs are formed by supplying fiber-forming material to a planetary gear metering pump having a plurality of outlets, flowing fiber-forming material from the pump outlets through a plurality of inlets in one or more die cavities, and meltblowing the fiber-forming material. Each die cavity inlet receives a fiber-forming material stream having a similar thermal history. The physical or chemical properties of the nonwoven web fibers such as their average molecular weight and polydispersity can be made more uniform. Wide nonwoven webs can be formed by arranging a plurality of such die cavities in a side-by-side relationship. Thicker or multilayered nonwoven webs can be formed by arranging a plurality of such die cavities atop one another.
    Type: Application
    Filed: June 20, 2002
    Publication date: December 25, 2003
    Applicant: 3M Innovative Properties Company
    Inventors: Stanley C. Erickson, James C. Breister, Michael G. Schwartz, Patrick J. Sager
  • Publication number: 20020110610
    Abstract: An apparatus for charging fibers that contain a nonconductive polymer. A polar liquid 32, 34 is sprayed onto free-fibers 24, and the free-fibers 24 are then collected to form an entangled nonwoven fibrous web 25 that may contain a portion of the polar liquid. The nonwoven web 25 is then dried 38. By applying an effective amount of polar liquid 32, 34 onto the nonconductive free-fibers 24 before forming the nonwoven web 25, followed by drying 38, the individual fibers 24 become charged. The apparatus can enable the fibers 24 to be charged during web manufacture without subsequent processing.
    Type: Application
    Filed: February 12, 2002
    Publication date: August 15, 2002
    Applicant: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, Michael G. Schwartz, Philip D. Eitzman, Marvin E. Jones
  • Patent number: 6375886
    Abstract: A method and apparatus for charging fibers that contain a nonconductive polymer. A polar liquid 32, 34 is sprayed onto free-fibers 24, and the free-fibers 24 are then collected to form an entangled nonwoven fibrous web 25 that may contain a portion of the polar liquid. The nonwoven web 25 is then dried 38. By applying an effective amount of polar liquid 32, 34 onto the nonconductive free-fibers 24 before forming the nonwoven web 25, followed by drying 38, the individual fibers 24 become charged. The method and apparatus enable the fibers 24 to be charged during web manufacture without subsequent processing.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: April 23, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, Michael G. Schwartz, Philip D. Eitzman, Marvin E. Jones
  • Patent number: 6135658
    Abstract: Thermal printer donor media element (10) with a single track of code including sequential code segments (30). The present donor media element (10) includes sequential color patches (12, 14, 16) which form multiple color groups (18) located along the length of the element (10), and the code segments (30) are arranged in corresponding repetitive groups located adjacent the color groups (18), the sequential code segments including fields of encoded data representative of at least donor media type, and color and location of successive ones of the color patches (12, 14, 16). Apparatus for detecting and reading the encoded data include a single sensor (38) and a processor (44) operable for accurately completing incomplete or incorrectly detected data.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: October 24, 2000
    Assignee: Eastman Kodak Company
    Inventors: Samuel Reele, Michael G. Schwartz
  • Patent number: 4052306
    Abstract: A floatable oil sweep useful in controlling an oil spill on a moving body of water comprises an elongated web of oil sorbent adapted to float on the body of water with its large-area faces parallel to the waterline, and a weighted open-mesh netting attached to the web and adapted to be suspended below the floating web when the oil sweep is deployed. Use of the netting has been found to significantly extend the period of time before oil droplets are carried under the oil sweep by movement of the body of water.
    Type: Grant
    Filed: October 12, 1976
    Date of Patent: October 4, 1977
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Michael G. Schwartz, Alan P. Lorentzen, David J. Bucheck