Patents by Inventor Michael G. Valdez

Michael G. Valdez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220233084
    Abstract: A method of sensing a physiological parameter involves advancing a delivery catheter to a right atrium of a heart of a patient via a transcatheter access path, advancing the delivery catheter through an interatrial septum wall into a left atrium of the heart, deploying a distal anchor of a sensor implant device from the delivery catheter, anchoring the distal anchor of the sensor implant device to a first pulmonary vein, withdrawing the delivery catheter away from the first pulmonary vein, thereby exposing at least a portion of a sensor module of the sensor implant device in the left atrium, deploying a proximal anchor of the sensor implant device from the delivery system, anchoring the proximal anchor of the sensor implant device to a second pulmonary vein, and withdrawing the delivery catheter from the heart.
    Type: Application
    Filed: February 18, 2022
    Publication date: July 28, 2022
    Inventor: Michael G. Valdez
  • Publication number: 20220168015
    Abstract: A puncture needle can comprise an elongate portion, a puncture component associated with a distal end of the elongate portion, and a spacer associated with a distal portion of the elongate portion, where the spacer can be configured to contact a wall of the delivery catheter lumen to prevent contact between the puncture component and the wall. A puncture needle can comprise an elongate portion and a puncture component associated with a distal end of the elongate portion, where the puncture component comprises a blade edge on a distal edge, and where the puncture component is configured to be advanceable through a lumen of a delivery catheter without the blade edge sticking to a wall of the lumen.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Daniel James Murray, Lillian Grace Myers, Don Huy Tran, Michael G. Valdez, Andrew Charles May
  • Patent number: 11311399
    Abstract: Delivery systems and catheters including lock and release connectors for implantable devices and methods for retaining, positioning, and deploying a medical device are disclosed. The lock and release connectors can include a body and at least one door engaged with the body, wherein the door is moveable from a first position to a second position. The lock and release connectors can further include at least one fastener connecting at least one end of the door to the body. The door can be integral with the body or connected and can comprise a shape memory material and/or other materials.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: April 26, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Liron Tayeb, David Maimon, Eitan Atias, Adi Carmi
  • Patent number: 11291540
    Abstract: Docking stations for transcatheter valves are described. The docking stations can include an expandable frame, at least one sealing portion, and a valve seat. The expandable frame can be configured to conform to an interior shape of a portion of the circulatory system when expanded inside the circulatory system. The sealing portion can be configured to contact an interior surface of the circulatory system to create a seal. The valve seat can be connected to the expandable frame and can be configured to support an expandable transcatheter valve. The docking stations are adaptable to different anatomies/locations to allow implantation of a transcatheter valve in a variety of anatomies/locations.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 5, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Liron Tayeb, Eran Goldberg, David Maimon, Adi Carmi, Arie Tylis, Ofir Witzman, Ralph Schneider, Mohammad Jafari, Hengchu Cao, Eason Michael Abbott, Dustin P. Armer, Michael D. Franklin, Tomer Saar, Anatoly Dvorsky, John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Assaf Bash, Amir Blumenfeld, Noa Axelrod, Eitan Atias
  • Patent number: 11291542
    Abstract: Described herein are systems and methods from delivering prosthetic devices, such as prosthetic heart valves, through the body and into the heart for implantation therein. The prosthetic devices delivered with the delivery systems disclosed herein are, for example, radially expandable from a radially compressed state mounted on the delivery system to a radially expanded state for implantation using an inflatable balloon of the delivery system. Exemplary delivery routes through the body and into the heart include transfemoral routes, transapical routes, and transaortic routes, among others.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: April 5, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Walter Lee, Mark M. Dehdashtian, Teodoro S. Jimenez, Gilbert S. Leung, Bryan A. Janish, Michael G. Valdez, Tram Ngoc Nguyen, Timothy C. Ulrich
  • Publication number: 20220096087
    Abstract: A method of managing left atrial pressure involves advancing a delivery catheter to a right atrium of a heart of a patient via a transcatheter access path, advancing the delivery catheter through an interatrial septum wall into a left atrium of the heart, deploying a distal end of a bypass fluid conduit from the delivery catheter, anchoring the distal end of the bypass fluid conduit to a pulmonary vein, withdrawing the delivery catheter through the interatrial septum wall, thereby exposing at least a portion of a medial segment of the bypass fluid conduit in the left atrium, anchoring a proximal end of the bypass fluid conduit to the interatrial septum wall, and withdrawing the delivery catheter from the heart.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventor: Michael G. Valdez
  • Publication number: 20220039833
    Abstract: A delivery sheath can comprise an elongate tubular member and an anchor on a distal portion of the elongate tubular member, the anchor being configured to engage with the coronary sinus ostium, or both the coronary sinus ostium and a portion of the coronary sinus adjacent to the ostium, so as to provide stable transcatheter access into the coronary sinus. The anchor can be configured to permit blood flow through the ostium while in engagement with the ostium.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Linda Thai, Michael G. Valdez, Tarannum Ishaq Gutierrez, Don Huy Tran
  • Publication number: 20220031453
    Abstract: An implantable prosthetic valve can include an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration. A leaflet structure can be positioned within the frame and secured thereto. An outer skirt can be positioned around an outer surface of the frame and secured to the frame and an annular sealing member can be positioned around an outer surface of the outer skirt and secured to the outer skirt.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Inventors: Ziv Yohanan, Tamir S. Levi, David Maimon, Michael G. Valdez, Tram Ngoc Nguyen
  • Patent number: 11147667
    Abstract: An implantable prosthetic valve can include an annular frame comprising an inflow end and an outflow end and being radially collapsible and expandable between a radially collapsed configuration and a radially expanded configuration. A leaflet structure can be positioned within the frame and secured thereto. An annular sealing member can be positioned around an outer surface of the frame, wherein the sealing member has a periodic, undulating shape. An outer skirt can be positioned around an outer surface of the sealing member and secured to the frame.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 19, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Ziv Yohanan, Tamir S. Levi, David Maimon, Michael G. Valdez, Tram Ngoc Nguyen
  • Publication number: 20200353221
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar
  • Patent number: 10792471
    Abstract: A delivery sheath includes an elastic outer tubular layer and an inner tubular layer having a thick wall portion integrally connected to a thin wall portion. The inner tubular layer can have a compressed or folded condition wherein the thin wall portion folds onto an outer surface of the thick wall portion under urging of the elastic outer tubular layer. When an implant passes therethrough, the outer tubular layer stretches and the inner tubular layer unfolds into an expanded lumen diameter. Once the implant passes, the outer tubular layer again urges the inner tubular layer into the compressed condition with the sheath reassuming its smaller profile. The sheath may also include selectively placed longitudinal rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion and collapse, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: October 6, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar
  • Publication number: 20200229921
    Abstract: Described herein are systems and methods from delivering prosthetic devices, such as prosthetic heart valves, through the body and into the heart for implantation therein. The prosthetic devices delivered with the delivery systems disclosed herein are, for example, radially expandable from a radially compressed state mounted on the delivery system to a radially expanded state for implantation using an inflatable balloon of the delivery system. Exemplary delivery routes through the body and into the heart include transfemoral routes, transapical routes, and transaortic routes, among others.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Walter Lee, Mark M. Dehdashtian, Teodoro S. Jimenez, Gilbert S. Leung, Bryan A. Janish, Michael G. Valdez, Tram Ngoc Nguyen, Timothy C. Ulrich
  • Publication number: 20200229923
    Abstract: Embodiments of a catheter assembly are disclosed. The catheter assembly comprises a shaft; at least one connector assembly. The connector assembly can comprise a first connector portion and a second connector portion, wherein the first connector portion is fixedly coupled to a distal end of the shaft, and is coupled to the second connector portion with a limited degree of freedom of movement by at least one radially extending pin retained within at least one slot on the second connector portion. The at least one slot can have an oversized circumferential dimension that allows limited rotation of the second connector portion relative to the first connector portion about a longitudinal axis of the shaft.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventor: Michael G. Valdez
  • Patent number: 10716919
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 21, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana K. Gowdar, Yong Gao, David D. Williams
  • Publication number: 20200113719
    Abstract: Delivery systems and catheters including lock and release connectors for implantable devices and methods for retaining, positioning, and deploying a medical device are disclosed. The lock and release connectors can include a body and at least one door engaged with the body, wherein the door is moveable from a first position to a second position. The lock and release connectors can further include at least one fastener connecting at least one end of the door to the body. The door can be integral with the body or connected and can comprise a shape memory material and/or other materials.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Liron Tayeb, David Maimon, Eitan Atias, Adi Carmi
  • Publication number: 20200108231
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: August 26, 2019
    Publication date: April 9, 2020
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Patent number: 10537431
    Abstract: An expandable introducer sheath for passage of implant delivery catheters, such as catheters for delivery of prosthetic heart valves. The expandable sheath balances the amounts, shapes and positions of various stiff and elastic structures in the sheath to selectively program the expandability and buckling stiffness of the sheath. The expandable sheath can include, for example, an expandable tubular layer that includes alternating stiff and elastic wall portions of a single radial thickness. The combination of stiff and elastic wall portions allow for torque and push strength to advance the expandable sheath while at the same time accommodating temporary expansion. The expandable sheath can also be reinforced with a tubular layer of braided fibers or a stent structure for additional strength. Other embodiments include selective use of slots or gaps at the distal end of a stiff wall portion to enhance expandability and distribute strain.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: January 21, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Pu Zhou, Yong Gao, Erik Bulman, Baigui Bian, Yidong M. Zhu, David D. Williams, Timothy A. Geiser, Michael G. Valdez, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana K. Gowdar
  • Publication number: 20190381284
    Abstract: A delivery sheath includes an outer tubular layer and an initially folded inner tubular layer. When an implant passes therethrough, the outer tubular layer expands and the inner tubular layer unfolds into an expanded lumen diameter. The sheath may also include selectively placed longitudinal support rods that mediate friction between the inner and outer tubular layers to facilitate easy expansion, thereby reducing the push force needed to advance the implant through the sheath's lumen.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 19, 2019
    Inventors: Pu Zhou, Erik Bulman, Timothy A. Geiser, Michael G. Valdez, Yidong M. Zhu, Baigui Bian, Sonny Tran, Richard D. White, Thanh Huy Le, Tung T. Le, Alpana Kiran Gowdar, Yong Gao, David Delon Williams
  • Publication number: 20190374341
    Abstract: Described herein are systems and methods from delivering prosthetic devices, such as prosthetic heart valves, through the body and into the heart for implantation therein. The prosthetic devices delivered with the delivery systems disclosed herein are, for example, radially expandable from a radially compressed state mounted on the delivery system to a radially expanded state for implantation using an inflatable balloon of the delivery system. Exemplary delivery routes through the body and into the heart include transfemoral routes, transapical routes, and transaortic routes, among others.
    Type: Application
    Filed: August 23, 2019
    Publication date: December 12, 2019
    Inventors: Walter Lee, Mark M. Dehdashtian, Teodoro S. Jimenez, Gilbert S. Leung, Bryan A. Janish, Michael G. Valdez, Tram Ngoc Nguyen, Timothy C. Ulrich
  • Patent number: 10500041
    Abstract: Prosthetic valve embodiments are described herein that include a frame and a valve member mounted within the frame. The valve members can have a plurality of leaflets that are affixed to one another along their inflow edges, with articulating edges projecting from the inflow edges in the outflow direction. In an open configuration, the articulating edges can be collapsed radially inward by the forward flow of blood through the prosthetic valve, thereby creating a plurality of discrete flow areas between the frame and the inflow edges of the leaflets. In a closed configuration, the leaflets can be pushed radially outward by the reverse flow of blood, thereby closing the plurality of discrete flow areas.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 10, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Michael G. Valdez, Tram Ngoc Nguyen