Patents by Inventor Michael G. Volas

Michael G. Volas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10646915
    Abstract: A structure and method are provided for forming a box for molding an article for use in casting. A wall defines a cavity formed in a shape of the article and configured to receive a material for forming the article. A rim is disposed around the wall and extends therefrom defining a hollow back on an opposite side of the wall from the cavity. A lattice structure formed in the hollow back and is connected with the wall and with the rim. The box may be formed by additive manufacturing.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: May 12, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Yathiraj Kasal, Michael G. Volas
  • Publication number: 20190151933
    Abstract: A structure and method are provided for forming a box for molding an article for use in casting. A wall defines a cavity formed in a shape of the article and configured to receive a material for forming the article. A rim is disposed around the wall and extends therefrom defining a hollow back on an opposite side of the wall from the cavity. A lattice structure formed in the hollow back and is connected with the wall and with the rim. The box may be formed by additive manufacturing.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 23, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Yathiraj Kasal, Michael G. Volas
  • Patent number: 9447484
    Abstract: In accordance with an exemplary embodiment, a method of forming a oxide dispersion-strengthened alloy metal includes the steps of providing, in a powdered form, an oxide dispersion-strengthened alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, withdrawing the energy beam from the portion of the powdered alloy composition, and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the oxide dispersion-strengthened alloy metal.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: September 20, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Harry Lester Kington, Donald G. Godfrey, Mark C. Morris, Michael G. Volas, Brian Hann, Robert J. Dawson
  • Publication number: 20150093279
    Abstract: In accordance with an exemplary embodiment, a method of forming a oxide dispersion-strengthened alloy metal includes the steps of providing, in a powdered form, an oxide dispersion-strengthened alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, withdrawing the energy beam from the portion of the powdered alloy composition, and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the oxide dispersion-strengthened alloy metal.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Inventors: Harry Lester Kington, Donald G. Godfrey, Mark C. Morris, Michael G. Volas, Brian Hann, Robert J. Dawson
  • Patent number: 6019812
    Abstract: A plasma cold hearth melting process which provides an ingot of improved properties and including a plasma cold hearth melting furnace operated inside an air-tight chamber containing an inert gas, such as helium, at subatmospheric pressure levels. Raw material metals for a desired titanium or titanium alloy composition are supplied to a melting hearth located inside the chamber and heated by a plasma torch which utilizes an inert gas. The plasma torch melts the raw material metal thereby forming a molten pool of metal that is directed to at least one refining hearth. Plasma torches located in the refining hearths maintain the composition in a molten state as it passes through the cold hearth furnace to allow impurities present in the composition to be refined therefrom. After passing through the refining hearths, the molten pool of metal is poured into an ingot mold while still under subatmospheric inert gas pressure. The molten material is then allowed to cool and solidify into an ingot.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: February 1, 2000
    Assignee: Teledyne Industries, Inc.
    Inventors: Michael G. Volas, William R. Chinnis