Patents by Inventor Michael Gebinoga

Michael Gebinoga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10780613
    Abstract: The present invention relates firstly to a method for reproducing a stem cell niche of an organism. The invention further relates to a reproduction of a stem cell niche of an organism. According to the invention, an image of a tissue of an organism is generated, which tissue comprises at least one stem cell niche. The image is filtered in order to obtain a structural pattern of the imaged stem cell niche. In a further step, a lithographic mask is generated from the structural pattern. According to the invention, a starting material of a substrate is structured by means of indirect or direct application of the lithographic mask, whereby a structured substrate is obtained which represents the reproduction of the imaged stem cell niche of the organism. The reproduction can be characterised as biolithomorphic.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: September 22, 2020
    Assignees: TECHNISCHE UNIVERSITAET ILMENAU, UNIVERSITAETSKLINIKUM JENA
    Inventors: Andreas Schober, Joerg Hampl, Frank Weise, Justyna Borowiec, Uta Fernekorn, Michael Gebinoga, Sukhdeep Singh, Gregor Schlingloff, Sebastian Haefner, James Beck, Angelika Mueller, Astrid Voigt
  • Publication number: 20180147751
    Abstract: The present invention relates firstly to a method for reproducing a stem cell niche of an organism. The invention further relates to a reproduction of a stem cell niche of an organism. According to the invention, an image of a tissue of an organism is generated, which tissue comprises at least one stem cell niche. The image is filtered in order to obtain a structural pattern of the imaged stem cell niche. In a further step, a lithographic mask is generated from the structural pattern. According to the invention, a starting material of a substrate is structured by means of indirect or direct application of the lithographic mask, whereby a structured substrate is obtained which represents the reproduction of the imaged stem cell niche of the organism. The reproduction can be characterised as biolithomorphic.
    Type: Application
    Filed: May 26, 2016
    Publication date: May 31, 2018
    Inventors: Andreas SCHOBER, Joerg HAMPL, Frank WEISE, Justyna BOROWIEC, Uta FERNEKORN, Michael GEBINOGA, Sukhdeep SINGH, Gregor SCHLINGLOFF, Sebastian HAEFNER, James BECK, Angelika MUELLER, Astrid VOIGT
  • Patent number: 9375305
    Abstract: The present invention relates to a method for producing a structure modeled on a biological tissue. The invention also relates to a structure which can be produced using the method according to the invention. According to an embodiment of the invention, a precursor of a biopolymer is locally irradiated with electromagnetic radiation in a targeted manner, wherein the irradiation, in particular the selection of the areas to be irradiated, is effected according to data which describe a structural construction at least components of the extracellular matrix of the biological tissue. In this case, the electromagnetic radiation is such that two-photon or multi-photon absorption takes place in the irradiated areas of the precursor and results in the precursor being polymerized to form the biopolymer in the irradiated areas, with the result being that the precursor is at least partially solidified there.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: June 28, 2016
    Assignee: TECHNISCHE UNIVERSITAET ILMENAU
    Inventors: Andreas Schober, Michael Gebinoga, Uta Fernekorn, Frank Weise, Jörg Hampl, Julia Katzmann, Thomas Klar
  • Publication number: 20140378954
    Abstract: The present invention relates to a device for closing an open, bleeding wound of an animal or human body. The invention further relates to a device for processing tissue of a human or animal body, for example, a device for producing a support in a vessel of the body. The device for closing a bleeding wound firstly comprises a laser for irradiating the blood in the wound with infrared laser radiation. According to the invention, the laser radiation of the laser can be adjusted such that two- or multiphoton absorption occurs in irradiated regions of the blood, whereby the blood in the irradiated regions polymerises into a solidified biopolymer and closes the wound.
    Type: Application
    Filed: December 15, 2012
    Publication date: December 25, 2014
    Inventors: Andreas Schober, Michael Gebinoga, Uta Fernekorn
  • Publication number: 20130197668
    Abstract: The present invention relates to a method for producing a structure modeled on a biological tissue. The invention also relates to a structure which can be produced using the method according to the invention. According to an embodiment of the invention, a precursor of a biopolymer is locally irradiated with electromagnetic radiation in a targeted manner, wherein the irradiation, in particular the selection of the areas to be irradiated, is effected according to data which describe a structural construction at least components of the extracellular matrix of the biological tissue. In this case, the electromagnetic radiation is such that two-photon or multi-photon absorption takes place in the irradiated areas of the precursor and results in the precursor being polymerized to form the biopolymer in the irradiated areas, with the result being that the precursor is at least partially solidified there.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 1, 2013
    Applicant: Technische Universität Ilmenau
    Inventors: Andreas Schober, Michael Gebinoga, Uta Fernekorn, Frank Weise, Jörg Hampl, Julia Katzmann, Thomas Klar