Patents by Inventor Michael GLOSS

Michael GLOSS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11903828
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a lateral control feature. The cord is tensioned to crimp the prosthesis to a compressed condition for delivery to a target site. Tension is lessened to allow the prosthesis to self-expand. In a tethered and expanded state in which the prosthesis has self-expanded and is connected to the spindle by the cord, the lateral control feature directs the spindle to a prescribed location relative to the prosthesis appropriate for a functional evaluation of the prosthesis. In some embodiments, the spindle is directed to a center of the prosthesis; in other embodiments, the spindle is held at a commissure of the prosthesis. The lateral control features of the present disclosure assume numerous forms.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 20, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Publication number: 20240016605
    Abstract: Numerous delivery devices for delivery of a stented prosthesis, such as a stented prosthetic heart valve. Various delivery devices include a capsule that is advanced proximally to retain the stented prosthesis, which is secured over an inner shaft assembly of the delivery device. The delivery device further includes a bumper or bumper assembly to provide a smooth transition of the capsule over the stented prosthesis. In some alternate disclosed embodiments, the bumper further serves to connect various elements of the inner shaft assembly. Additional embodiments include a bumper assembly arranged and configured to longitudinally expand and contract to substantially fill any open space as the capsule is retracted from the stented prosthesis, which prevents kinking in the capsule. Additional embodiments include proximal and/or distal bumpers for temporarily covering and smoothing the ends of the stented prosthesis as part of a delivery device that does not include a capsule.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 18, 2024
    Inventors: Don Tran, Martha Barajas-Torres, Marian Lally, Michael Gloss, Timothy Groen, Leonel Mendoza, Siyan Som, Michele Silver, Nathan Brown, Jill Mendelson
  • Publication number: 20240000567
    Abstract: A system includes a medical device for implanting in a valve of a subject, the implantable medical device having a self-expanding frame; and a holder configured to retain the frame of the implantable medical device in a constricted configuration and to control expansion of the frame. The holder has a controllably constrictable and expandable loop, wherein the loop is disposed about at least a portion of the self-expanding frame such that constriction or expansion of the first loop controls constriction or expansion of the frame.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 4, 2024
    Inventors: Michael Gloss, Timothy Groen, Carolyn Majkrzak, Behrooz Nadian, Matthew Rust, Timothy Ryan, Matthew Weston, Marc Anderson, Evelyn Birmingham, Mark Casley, Deirdre McGowan Smyth
  • Patent number: 11806236
    Abstract: Numerous delivery devices for delivery of a stented prosthesis, such as a stented prosthetic heart valve. Various delivery devices include a capsule that is advanced proximally to retain the stented prosthesis, which is secured over an inner shaft assembly of the delivery device. The delivery device further includes a bumper or bumper assembly to provide a smooth transition of the capsule over the stented prosthesis. In some alternate disclosed embodiments, the bumper further serves to connect various elements of the inner shaft assembly. Additional embodiments include a bumper assembly arranged and configured to longitudinally expand and contract to substantially fill any open space as the capsule is retracted from the stented prosthesis, which prevents kinking in the capsule. Additional embodiments include proximal and/or distal bumpers for temporarily covering and smoothing the ends of the stented prosthesis as part of a delivery device that does not include a capsule.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: November 7, 2023
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Don Tran, Martha Barajas-Torres, Marian Lally, Michael Gloss, Timothy Groen, Leonel Mendoza, Siyan Som, Michele Silver, Nathan Brown, Jill Mendelson
  • Publication number: 20230346578
    Abstract: The present disclosure relates to delivery devices for transcatheter stented prosthesis loading, delivery and implantation. The delivery devices provide a loaded delivery state in which the stented prosthesis is loaded and compressed over the delivery device. The compression of the stented prosthesis can be adjusted with one or more elongate tension members, which extend around the stented prosthesis and proximately to an actuation and release assembly that can be provided as part of a handle assembly. The delivery device can be manipulated to adjust tension in the tension members to permit the stented prosthesis to compress, self-expand, and ultimately release from the shaft assembly. In some embodiments, the tension in one or more tension members is adjusted with one or more actuation and release assemblies.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 2, 2023
    Inventors: Michael A. Gloss, Patrick Griffin, Jeffrey D. Sandstrom, David James O'Toole, Rishi Manda, Niall F. Duffy
  • Patent number: 11793637
    Abstract: A system includes a medical device for implanting in a valve of a subject, the implantable medical device having a self-expanding frame; and a holder configured to retain the frame of the implantable medical device in a constricted configuration and to control expansion of the frame. The holder has a controllably constrictable and expandable loop, wherein the loop is disposed about at least a portion of the self-expanding frame such that constriction or expansion of the first loop controls constriction or expansion of the frame.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: October 24, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Michael Gloss, Timothy Groen, Carolyn Majkrzak, Behrooz Nadian, Matthew Rust, Timothy Ryan, Matthew Weston, Marc Anderson, Evelyn Birmingham, Mark Casley, Deirdre McGowan Smyth
  • Patent number: 11737898
    Abstract: The present disclosure relates to delivery devices for transcatheter stented prosthesis loading, delivery and implantation. The delivery devices provide a loaded delivery state in which the stented prosthesis is loaded and compressed over the delivery device. The compression of the stented prosthesis can be adjusted with one or more elongate tension members, which extend around the stented prosthesis and proximately to an actuation and release assembly that can be provided as part of a handle assembly. The delivery device can be manipulated to adjust tension in the tension members to permit the stented prosthesis to compress, self-expand, and ultimately release from the shaft assembly. In some embodiments, the tension in one or more tension members is adjusted with one or more actuation and release assemblies.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: August 29, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Michael Gloss, Patrick Griffin, Jeffrey Sandstrom, David O'Toole, Rishi Manda, Niall Duffy
  • Publication number: 20230200991
    Abstract: An example medical system includes a medical device configured to join the edges of the leaflets together, an elongate body configured to be navigated through vasculature to a heart valve of patient, and a plurality of tissue engagement devices extending from a distal end of the elongate body, each tissue engagement device comprising at least one clamp configured to capture leaflets of the heart valve.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Inventors: Michael Gloss, Caitlin Dorff, Fatemeh Fatemi Far, Emily Grimm, Matthew E. Genovese, Olivia Metcalf, Karan Punga, Eric Pierce
  • Publication number: 20230145819
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 11, 2023
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn
  • Patent number: 11583401
    Abstract: An example medical system includes a medical device configured to join the edges of the leaflets together, an elongate body configured to be navigated through vasculature to a heart valve of patient, and a plurality of tissue engagement devices extending from a distal end of the elongate body, each tissue engagement device comprising at least one clamp configured to capture leaflets of the heart valve.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: February 21, 2023
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Michael Gloss, Caitlin Dorff, Fatemeh Fatemi Far, Emily Grimm, Matthew E. Genovese, Olivia Metcalf, Karan Punga, Eric Pierce
  • Patent number: 11571302
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: February 7, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn
  • Publication number: 20220362022
    Abstract: Aspects of the disclosure include bodily lumen reshaping and reduction systems, devices and methods. Such implants can include a plurality of anchors serially interconnected with a cinching member. Delivery devices of the disclosure are configured to deploy a first anchor into tissue. The delivery device can then deploy a second anchor and wind the cinching member around the second anchor to reduce a distance between the first and second anchors, placating the tissue between the anchors. Additional anchors can be similarly deployed and the cinching member can be similarly adjusted to reshape the lumen. Methods of deploying and reshaping a bodily lumen are also disclosed. In various examples, the bodily lumen is a heart valve, atrial appendage, portion of a gastrointestinal tract or urethra. Various embodiments include one or more anchors having a ratchet assembly or the like to substantially prevent the cinching member from unwinding.
    Type: Application
    Filed: April 6, 2022
    Publication date: November 17, 2022
    Applicant: Medtronic, Inc.
    Inventors: Caitlin M. Dorff, William A. Berthiaume, Emily A. Grimm, Matthew E. Genovese, Michael A. Gloss, William W. Chang, Karan P. Punga, Fatemeh Fatemi Far
  • Publication number: 20210401578
    Abstract: Devices including a capsule having an interior and a clamp assembly including a plurality of clamps. Each clamp includes a first arm having a first free end and a second arm having a second free end. The device includes a clamp assembly including a compacted state in which the plurality of clamps are compressed within the capsule and a deployed state in which at least the free ends of the plurality of clamps are positioned outside of the interior of the capsule. The first free end is closer to the second free end in the compacted state as compared to the deployed state. The device can further include a push rod releasably secured to the clamp assembly and a delivery rod releasably secured to the capsule. Methods of using the devices are also disclosed.
    Type: Application
    Filed: May 12, 2021
    Publication date: December 30, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: William W. Chang, Karan P. Punga, Matthew Baldwin, Brian J. Castelli, Michael A. Gloss, Mingfei Chen
  • Publication number: 20210251758
    Abstract: Delivery devices and device elements that provide steering capabilities and methods of steering such delivery devices during the delivery of a stented prosthesis to a target site. Various delivery devices include a shaft assembly having a plurality of lumens through which tension members that compressively retain the stented prosthesis to the shaft assembly are routed. By selectively tensioning one or more tension members, the shaft assembly can be pulled or steered in a desired direction. Various embodiments include one or more steering or stiffening rods that can reinforce the device or counteract any unintended bending or steering of the delivery device.
    Type: Application
    Filed: May 3, 2021
    Publication date: August 19, 2021
    Applicant: Medtronic, Inc.
    Inventors: Michael Gloss, James R. Keogh, Timothy Ryan, Declan P. Costello, Wayne M. Falk
  • Patent number: 10993808
    Abstract: Delivery devices and device elements that provide steering capabilities and methods of steering such delivery devices during the delivery of a stented prosthesis to a target site. Various delivery devices include a shaft assembly having a plurality of lumens through which tension members that compressively retain the stented prosthesis to the shaft assembly are routed. By selectively tensioning one or more tension members, the shaft assembly can be pulled or steered in a desired direction. Various embodiments include one or more steering or stiffening rods that can reinforce the device or counteract any unintended bending or steering of the delivery device.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: May 4, 2021
    Assignee: Medtronic, Inc.
    Inventors: Michael Gloss, James R. Keogh, Timothy Ryan, Declan P. Costello, Wayne M. Falk
  • Publication number: 20210093451
    Abstract: Numerous delivery devices for delivery of a stented prosthesis, such as a stented prosthetic heart valve. Various delivery devices include a capsule that is advanced proximally to retain the stented prosthesis, which is secured over an inner shaft assembly of the delivery device. The delivery device further includes a bumper or bumper assembly to provide a smooth transition of the capsule over the stented prosthesis. In some alternate disclosed embodiments, the bumper further serves to connect various elements of the inner shaft assembly. Additional embodiments include a bumper assembly arranged and configured to longitudinally expand and contract to substantially fill any open space as the capsule is retracted from the stented prosthesis, which prevents kinking in the capsule. Additional embodiments include proximal and/or distal bumpers for temporarily covering and smoothing the ends of the stented prosthesis as part of a delivery device that does not include a capsule.
    Type: Application
    Filed: December 15, 2020
    Publication date: April 1, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Don Tran, Martha Barajas-Torres, Marian Lally, Michael Gloss, Timothy Groen, Leonel Mendoza, Siyan Som, Michele Silver, Nathan Brown, Jill Mendelson
  • Patent number: 10893938
    Abstract: Numerous delivery devices for delivery of a stented prosthesis, such as a stented prosthetic heart valve. Various delivery devices include a capsule that is advanced proximally to retain the stented prosthesis, which is secured over an inner shaft assembly of the delivery device. The delivery device further includes a bumper or bumper assembly to provide a smooth transition of the capsule over the stented prosthesis. In some alternate disclosed embodiments, the bumper further serves to connect various elements of the inner shaft assembly. Additional embodiments include a bumper assembly arranged and configured to longitudinally expand and contract to substantially fill any open space as the capsule is retracted from the stented prosthesis, which prevents kinking in the capsule. Additional embodiments include proximal and/or distal bumpers for temporarily covering and smoothing the ends of the stented prosthesis as part of a delivery device that does not include a capsule.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 19, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Don Tran, Martha Barajas-Torres, Marian Lally, Michael Gloss, Timothy Groen, Leonel Mendoza, Siyan Som, Michele Silver, Nathan Brown, Jill Mendelson
  • Publication number: 20200375770
    Abstract: The present disclosure relates to delivery devices for transcatheter stented prosthesis loading, delivery and implantation. The delivery devices provide a loaded delivery state in which the stented prosthesis is loaded and compressed over the delivery device. The compression of the stented prosthesis can be adjusted with one or more elongate tension members, which extend around the stented prosthesis and proximately to an actuation and release assembly that can be provided as part of a handle assembly. The delivery device can be manipulated to adjust tension in the tension members to permit the stented prosthesis to compress, self-expand, and ultimately release from the shaft assembly. In some embodiments, the tension in one or more tension members is adjusted with one or more actuation and release assemblies.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Jeffrey Sandstrom, David O'Toole, Rishi Manda, Niall Duffy
  • Publication number: 20200345490
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a lateral control feature. The cord is tensioned to crimp the prosthesis to a compressed condition for delivery to a target site. Tension is lessened to allow the prosthesis to self-expand. In a tethered and expanded state in which the prosthesis has self-expanded and is connected to the spindle by the cord, the lateral control feature directs the spindle to a prescribed location relative to the prosthesis appropriate for a functional evaluation of the prosthesis. In some embodiments, the spindle is directed to a center of the prosthesis; in other embodiments, the spindle is held at a commissure of the prosthesis. The lateral control features of the present disclosure assume numerous forms.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Applicant: Medtronic Vascular, Inc.
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Patent number: 10813755
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 27, 2020
    Assignee: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn