Patents by Inventor Michael Goldflam

Michael Goldflam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11674850
    Abstract: An apparatus is provided for nanoantenna-enhanced detection of infrared radiation. The apparatus includes one or more detector pixels. A plurality of detector pixels can constitute a focal plane array (FPA). Each detector pixel carries at least a first and a second subpattern of nanoantenna elements, with elements of the second subpattern interpolated between elements of the first subpattern. Each detector pixel also includes separate collection electrodes for collecting photogenerated current from the respective subpatterns.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: June 13, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Michael Goldflam, David W. Peters, Paul Davids, Jin K. Kim, Evan Michael Anderson
  • Patent number: 11482560
    Abstract: A monolithically integrated, tunable infrared pixel comprises a combined broadband detector and graphene-enabled tunable metasurface filter that operate as a single solid-state device with no moving parts. Functionally, tunability results from the plasmonic properties of graphene that are acutely dependent upon the carrier concentration within the infrared. Voltage induced changes in graphene's carrier concentration can be leveraged to change the metasurface filter's transmission thereby altering the “colors” of light reaching the broadband detector and hence its spectral responsivity. The invention enables spectrally agile infrared detection with independent pixel-to-pixel spectral tunability.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: October 25, 2022
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Thomas Edwin Beechem, III, Michael Goldflam, Anna Tauke-Pedretti, Isaac Ruiz, David W. Peters, Stephen W. Howell
  • Patent number: 11125700
    Abstract: A time-resolved microwave reflectance apparatus comprises a pulsed or modulated optical source that irradiates a semiconductor sample with an excitation pump beam, a microwave oscillator that irradiates the sample with a continuous beam of microwaves, and a microwave detector that detects the microwaves reflected by the sample. Therefore, charge detection, rather than conventional absorption measurements (that detect the loss of photons), can be used to extract the absorption coefficient and band edge of a semiconductor material.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: September 21, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Eric A. Shaner, Michael Goldflam, Clark N. Kadlec
  • Patent number: 10877194
    Abstract: An actively tunable optical filter can control the amplitude of reflected infrared light. The filter exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene, on the Fermi-level, which can be controlled by conventional electrostatic gating. An exemplary filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm?1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a nanoantenna grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design is applicable across a broad range of infrared frequencies.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: December 29, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Thomas Edwin Beechem, III, Michael Goldflam, Stephen W. Howell, David W. Peters, Isaac Ruiz, Paul Davids
  • Publication number: 20200350356
    Abstract: A monolithically integrated, tunable infrared pixel comprises a combined broadband detector and graphene-enabled tunable metasurface filter that operate as a single solid-state device with no moving parts. Functionally, tunability results from the plasmonic properties of graphene that are acutely dependent upon the carrier concentration within the infrared. Voltage induced changes in graphene's carrier concentration can be leveraged to change the metasurface filter's transmission thereby altering the “colors” of light reaching the broadband detector and hence its spectral responsivity. The invention enables spectrally agile infrared detection with independent pixel-to-pixel spectral tunability.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: Thomas Edwin Beechem, III, Michael Goldflam, Anna Tauke-Pedretti, Isaac Ruiz, David W. Peters, Stephen W. Howell
  • Publication number: 20200057006
    Abstract: A time-resolved microwave reflectance apparatus comprises a pulsed or modulated optical source that irradiates a semiconductor sample with an excitation pump beam, a microwave oscillator that irradiates the sample with a continuous beam of microwaves, and a microwave detector that detects the microwaves reflected by the sample. Therefore, charge detection, rather than conventional absorption measurements (that detect the loss of photons), can be used to extract the absorption coefficient and band edge of a semiconductor material.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 20, 2020
    Inventors: Eric A. Shaner, Michael Goldflam, Clark N. Kadlec
  • Publication number: 20190219747
    Abstract: An actively tunable optical filter can control the amplitude of reflected infrared light. The filter exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene, on the Fermi-level,which can be controlled by conventional electrostatic gating. An exemplary filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm?1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a nanoantenna grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design is applicable across a broad range of infrared frequencies.
    Type: Application
    Filed: January 16, 2018
    Publication date: July 18, 2019
    Inventors: Thomas Edwin Beechem, III, Michael Goldflam, Stephen W. Howell, David W. Peters, Isaac Ruiz, Paul Davids
  • Publication number: 20190196229
    Abstract: Thermochromic low-emissivity films can comprise a vanadium dioxide thin film or a thin film of vanadium dioxide nanoparticles incorporated into a polymer matrix, and a layer comprising a transparent conductive oxide to modify solar heat gain, solar reflectivity and thermal resistance of windows. The thermochromic low-emissivity films transition from infrared (IR) reflective when warm, to IR transparent when cool. This dynamic reflectivity is passive by nature, and requires no electronics or power source to shift. In addition, this dynamic transition can occur at any design temperature, and when the nanoparticles are dispersed, they remain transparent in the visible spectrum during both phases.
    Type: Application
    Filed: May 16, 2018
    Publication date: June 27, 2019
    Inventors: Paul G. Clem, Michael Goldflam, Ting S. Luk, Michael B. Sinclair, Thomas Edwin Beechem, III
  • Publication number: 20180335651
    Abstract: Thermochromic low-emissivity films can comprise a vanadium dioxide thin film or a thin film of vanadium dioxide nanoparticles incorporated into a polymer matrix, and a layer comprising a transparent conductive oxide to modify solar heat gain, solar reflectivity and thermal resistance of windows. The thermochromic low-emissivity films transition from infrared (IR) reflective when warm, to IR transparent when cool. This dynamic reflectivity is passive by nature, and requires no electronics or power source to shift. In addition, this dynamic transition can occur at any design temperature, and when the nanoparticles are dispersed, they remain transparent in the visible spectrum during both phases.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 22, 2018
    Inventors: Paul G. Clem, Michael Goldflam, Ting S. Luk, Michael B. Sinclair, Thomas Edwin Beechem, III
  • Publication number: 20070046791
    Abstract: A method and system for efficiently deploying (also sometimes referred to as distributing and/or installing) a computer device's software image using a single portable image using an alternate partition for loading the image on the storage (hard drive) along with selected patches chosen for the configuration of the computer. The single image is processed using delta image patching technology to allow the single image to be customized and operable (work on) the particular computer, where the single portable image is adapted to operate on a large number of diverse computer device platforms.
    Type: Application
    Filed: August 26, 2005
    Publication date: March 1, 2007
    Applicant: Xpoint Technologies, Inc.
    Inventors: Frank Wang, Scott Aiken, Juliano Maldaner, Dennis Kelly, Michael Goldflam
  • Publication number: 20050289533
    Abstract: A method and system for updating or recovering a computer device's software image using a single portable operating system image stored on a bootable, secure partition on local storage (hard drive); a method and system utilizing delta image patching technology to allow the single image to work on a large number of diverse computer device platforms; and a method for distributing software patches and updates via a, secure local partition to ensure patches and updates are applied to well known software images that have not been modified to include malicious software and do not include any other undesirable changes that have been made to the primary, running operating system image.
    Type: Application
    Filed: August 26, 2005
    Publication date: December 29, 2005
    Applicant: Xpoint Technologies, Inc.
    Inventors: Frank Wang, Scott Aiken, Juliano Maldaner, Dennis Kelly, Michael Goldflam
  • Publication number: 20050180326
    Abstract: A system and method for providing services such as Wake-on-LAN and PXE Boot services to a multi-subnet network system which includes router and/or firewalls between different subnets. This is accomplished by using a peer computer to provide the service when performing such service is required to be transmitted across the router and/or firewall. That is, the system determines whether the service is required to go across the router and/or firewall, and, if so, to identify a computer (a peer computer) which is located on the appropriate subnet, then deliver the service to that peer computer (if necessary) and have that peer computer perform the selected service, such as Wake-on-LAN.
    Type: Application
    Filed: February 13, 2004
    Publication date: August 18, 2005
    Inventors: Michael Goldflam, Jan Roger Jonsson, Juliano Maldaner, Sulay Shah, Frank Wang
  • Publication number: 20040194085
    Abstract: There is provided a method and system for facilitating the allocation and management of system resource modules. Applications request services directly from a controlling library rather than directly from the resource. Initially, system service providers register capabilities and relative priorities with the controlling library. Following registration, the controlling library will receive all service requests from applications. In response, the controlling library identifies the available resource having the highest priority and passes the service request to that resource.
    Type: Application
    Filed: May 9, 2002
    Publication date: September 30, 2004
    Applicant: GlobespanVirata Incorporated
    Inventors: Eric Beaubien, Kraig Eric Haglund, Michael Goldflam