Patents by Inventor Michael Goryll

Michael Goryll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918826
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: March 5, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Publication number: 20220248648
    Abstract: A fisheries bycatch reduction device is disclosed which may be coupled to or positioned proximate to a net. The device includes a housing and an electrical assembly positioned within the housing. The bycatch reduction device uses a power management strategy to control illumination and charging to create a hassle free, readily deployable substitute for traditional buoys and reduces the unintended catch of non-desired marine life.
    Type: Application
    Filed: July 9, 2020
    Publication date: August 11, 2022
    Inventors: Mark Bailly, Jesse Senko, Jennifer Blain Christen, Michael Goryll, Stuart Bowden, Christopher Lue Sang
  • Publication number: 20210220668
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Patent number: 10974065
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: April 13, 2021
    Assignee: ARIZONA BOARD OF REGENTS OF BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Patent number: 10589124
    Abstract: Systems and methods for stimulating neural tissue are disclosed. An array of optically emissive pixels is configured to deliver light to the neural tissue of a subject. Individual pixels within the array can be addressed to selectively illuminate a portion of the neural tissue when a neurological event occurs. The system can also include an array of microelectrodes in electrical communication with the array of pixels and a power source. A biocompatible substrate can be used to support the microelectrodes pixels, and the power source. A microelectrode circuit and a pixel circuit can also be supported by the biocompatible substrate.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: March 17, 2020
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Joseph Smith, Barry O'Brien, Yong-Kyun Lee, Edward Bawolek, Jennifer Blain Christen, Michael Goryll, Jitendran Muthuswamy, George R. Kunnen, David Allee
  • Patent number: 10249741
    Abstract: A flexible ion-selective field effect transistor (ISFET) and methods of making the same are disclosed. The methods may comprise: (a) attaching a flexible substrate to a rigid support with an adhesive; (b) forming an ion-selective field effect transistor structure on a surface of the flexible substrate; and (c) removing the flexible substrate from the rigid support after step (b).
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: April 2, 2019
    Inventors: Joseph T. Smith, Michael Goryll, Sahil Shah, Jennifer Blain Christen, John Stowell
  • Publication number: 20160345846
    Abstract: A wearable biomedical device manufactured with a flat-panel display technology is provided. The device comprises flexible thin-film layers and a flexible substrate. The layers are laid on the substrate and contain a flexible two-dimensional array of organic light emitting diodes (OLEDs) and photodiodes. This array is connected to an external controller wirelessly or by wire, and the controller controls the pattern of activated OLEDs and photodiodes.
    Type: Application
    Filed: May 23, 2016
    Publication date: December 1, 2016
    Inventors: Joseph T. Smith, Edward J. Bawolek, Michael Goryll
  • Publication number: 20160287898
    Abstract: A system and method for modulating optogenetic vagus neurons in a noninvasive and transcutaneous manner is disclosed. The system and method comprises a two-dimensional array of organic light emitting diodes (OLEDs), a voltage-generating unit, a control unit, and a feedback loop. The array is placed on a subject's outer ear. Because the array is flexible, it can be closely placed on the skin of the outer ear. The array can deliver optical therapy and monitor heart rate variability (HRV) of the subject simultaneously, and the pixels of the array can be individually addressed. The voltage-generating unit generates pulsed voltage to the OLEDs. The control unit is connected to the array and controls the array and therapeutic patterns. The feedback loop uses the HRV to identify the therapeutic patterns.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 6, 2016
    Inventors: Joseph T. Smith, Michael Goryll, Dixie Kullman, Jitendran Muthuswamy, Jennifer Blain Christen
  • Publication number: 20150330941
    Abstract: A flexible ion-selective field effect transistor (ISFET) and methods of making the same are disclosed. The methods may comprise: (a) attaching a flexible substrate to a rigid support with an adhesive; (b) forming an ion-selective field effect transistor structure on a surface of the flexible substrate; and (c) removing the flexible substrate from the rigid support after step (b).
    Type: Application
    Filed: May 13, 2015
    Publication date: November 19, 2015
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Joseph T. Smith, Michael Goryll, Sahil Shah, Jennifer Blain Christen, John Stowell
  • Patent number: 7632670
    Abstract: Disclosed is a sensor comprising a substrate, a source contact region, a drain contact region, and the gate oxide of a transistor. A gate electrode is disposed between the gate oxide and a detection electrode made of a nonconducting material. The contact area Asens between the gate electrode and the detection electrode is larger than the contact area Agate between the gate electrode and the gate oxide, whereby the receptor can be immobilized on the surface of the detection electrode in a technically simple manner while the small contact area Agate between the gate electrode and the transistor provides for high sensitivity for detecting the analyte. According to the inventive method for detecting at least one analyte, at least one analyte is brought into contact with a receptor immobilized at the detection electrode so as to modify the electrical charge at the surface of the detection electrode. The analyte is detected by detecting the modified voltage in the transistor.
    Type: Grant
    Filed: December 14, 2002
    Date of Patent: December 15, 2009
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Andreas Offenhäusser, Margarete Odenthal, Michael Goryll, Jürgen Moers, Hans Lüth
  • Publication number: 20050040483
    Abstract: Disclosed is a sensor comprising a substrate, a source contact region, a drain contact region, and the gate oxide of a transistor. A gate electrode is disposed between the gate oxide and a detection electrode made of a nonconducting material. The contact area Asens between the gate electrode and the detection electrode is larger than the contact area Agate between the gate electrode and the gate oxide, whereby the receptor can be immobilized on the surface of the detection electrode in a technically simple manner while the small contact area Agate between the gate electrode and the transistor provides for high sensitivity for detecting the analyte. According to the inventive method for detecting at least one analyte, at least one analyte is brought into contact with a receptor immobilized at the detection electrode so as to modify the electrical charge at the surface of the detection electrode. The analyte is detected by detecting the modified voltage in the transistor.
    Type: Application
    Filed: December 14, 2002
    Publication date: February 24, 2005
    Inventors: Andreas Offenhauser, Margarate Odenthal, Michael Goryll, Jurgen Moers, Hans Luth