Patents by Inventor Michael Grabner

Michael Grabner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240078695
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Patent number: 11900629
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Grant
    Filed: February 27, 2023
    Date of Patent: February 13, 2024
    Assignee: NVIDIA Corporation
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Publication number: 20230366698
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Application
    Filed: July 14, 2023
    Publication date: November 16, 2023
    Inventors: David Nister, Ruchi Bhargava, Vaibhav Thukral, Michael Grabner, Ibrahim Eden, Jeffrey Liu
  • Publication number: 20230357076
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Application
    Filed: May 2, 2023
    Publication date: November 9, 2023
    Inventors: Michael Kroepfl, Amir Akbarzadeh, Ruchi Bhargava, Viabhav Thukral, Neda Cvijetic, Vadim Cugunovs, David Nister, Birgit Henke, Ibrahim Eden, Youding Zhu, Michael Grabner, Ivana Stojanovic, Yu Sheng, Jeffrey Liu, Enliang Zheng, Jordan Marr, Andrew Carley
  • Patent number: 11803192
    Abstract: Systems and methods for performing visual odometry more rapidly. Pairs of representations from sensor data (such as images from one or more cameras) are selected, and features common to both representations of the pair are identified. Portions of bundle adjustment matrices that correspond to the pair are updated using the common features. These updates are maintained in register memory until all portions of the matrices that correspond to the pair are updated. By selecting only common features of one particular pair of representations, updated matrix values may be kept in registers. Accordingly, matrix updates for each common feature may be collectively saved with a single write of the registers to other memory. In this manner, fewer write operations are performed from register memory to other memory, thus reducing the time required to update bundle adjustment matrices and thus speeding the bundle adjustment process.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: October 31, 2023
    Assignee: NVIDIA Corporation
    Inventors: Michael Grabner, Jeremy Furtek, David Nister
  • Patent number: 11788861
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: October 17, 2023
    Assignee: NVIDIA Corporation
    Inventors: David Nister, Ruchi Bhargava, Vaibhav Thukral, Michael Grabner, Ibrahim Eden, Jeffrey Liu
  • Publication number: 20230230273
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 20, 2023
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Patent number: 11698272
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 11, 2023
    Assignee: NVIDIA Corporation
    Inventors: Michael Kroepfl, Amir Akbarzadeh, Ruchi Bhargava, Vaibhav Thukral, Neda Cvijetic, Vadim Cugunovs, David Nister, Birgit Henke, Ibrahim Eden, Youding Zhu, Michael Grabner, Ivana Stojanovic, Yu Sheng, Jeffrey Liu, Enliang Zheng, Jordan Marr, Andrew Carley
  • Patent number: 11657532
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g., an autonomous or semi-autonomous vehicle—to help in navigating the environment, and/or the profile may be used to detect bumps, humps, and/or other protuberances along the driving surface, in addition to a location, orientation, and geometry thereof.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 23, 2023
    Assignee: NVIDIA Corporation
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Publication number: 20220413509
    Abstract: Systems and methods for performing visual odometry more rapidly. Pairs of representations from sensor data (such as images from one or more cameras) are selected, and features common to both representations of the pair are identified. Portions of bundle adjustment matrices that correspond to the pair are updated using the common features. These updates are maintained in register memory until all portions of the matrices that correspond to the pair are updated. By selecting only common features of one particular pair of representations, updated matrix values may be kept in registers. Accordingly, matrix updates for each common feature may be collectively saved with a single write of the registers to other memory. In this manner, fewer write operations are performed from register memory to other memory, thus reducing the time required to update bundle adjustment matrices and thus speeding the bundle adjustment process.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Inventors: Michael Grabner, Jeremy Furtek, David Nister
  • Patent number: 11435756
    Abstract: Systems and methods for performing visual odometry more rapidly. Pairs of representations from sensor data (such as images from one or more cameras) are selected, and features common to both representations of the pair are identified. Portions of bundle adjustment matrices that correspond to the pair are updated using the common features. These updates are maintained in register memory until all portions of the matrices that correspond to the pair are updated. By selecting only common features of one particular pair of representations, updated matrix values may be kept in registers. Accordingly, matrix updates for each common feature may be collectively saved with a single write of the registers to other memory. In this manner, fewer write operations are performed from register memory to other memory, thus reducing the time required to update bundle adjustment matrices and thus speeding the bundle adjustment process.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: September 6, 2022
    Assignee: NVIDIA Corporation
    Inventors: Michael Grabner, Jeremy Furtek, David Nister
  • Publication number: 20210183093
    Abstract: In various examples, surface profile estimation and bump detection may be performed based on a three-dimensional (3D) point cloud. The 3D point cloud may be filtered in view of a portion of an environment including drivable free-space, and within a threshold height to factor out other objects or obstacles other than a driving surface and protuberances thereon. The 3D point cloud may be analyzed—e.g., using a sliding window of bounding shapes along a longitudinal or other heading direction—to determine one-dimensional (1D) signal profiles corresponding to heights along the driving surface. The profile itself may be used by a vehicle—e.g.
    Type: Application
    Filed: November 24, 2020
    Publication date: June 17, 2021
    Inventors: Minwoo Park, Yue Wu, Michael Grabner, Cheng-Chieh Yang
  • Publication number: 20210165418
    Abstract: Systems and methods for performing visual odometry more rapidly. Pairs of representations from sensor data (such as images from one or more cameras) are selected, and features common to both representations of the pair are identified. Portions of bundle adjustment matrices that correspond to the pair are updated using the common features. These updates are maintained in register memory until all portions of the matrices that correspond to the pair are updated. By selecting only common features of one particular pair of representations, updated matrix values may be kept in registers. Accordingly, matrix updates for each common feature may be collectively saved with a single write of the registers to other memory. In this manner, fewer write operations are performed from register memory to other memory, thus reducing the time required to update bundle adjustment matrices and thus speeding the bundle adjustment process.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 3, 2021
    Inventors: Michael Grabner, Jeremy Furtek, David Nister
  • Publication number: 20210063198
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 4, 2021
    Inventors: David Nister, Ruchi Bhargava, Vaibhav Thukral, Michael Grabner, Ibrahim Eden, Jeffrey Liu
  • Publication number: 20210063200
    Abstract: An end-to-end system for data generation, map creation using the generated data, and localization to the created map is disclosed. Mapstreams—or streams of sensor data, perception outputs from deep neural networks (DNNs), and/or relative trajectory data—corresponding to any number of drives by any number of vehicles may be generated and uploaded to the cloud. The mapstreams may be used to generate map data—and ultimately a fused high definition (HD) map—that represents data generated over a plurality of drives. When localizing to the fused HD map, individual localization results may be generated based on comparisons of real-time data from a sensor modality to map data corresponding to the same sensor modality. This process may be repeated for any number of sensor modalities and the results may be fused together to determine a final fused localization result.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 4, 2021
    Inventors: Michael Kroepfl, Amir Akbarzadeh, Ruchi Bhargava, Vaibhav Thukral, Neda Cvijetic, Vadim Cugunovs, David Nister, Birgit Henke, Ibrahim Eden, Youding Zhu, Michael Grabner, Ivana Stojanovic, Yu Sheng, Jeffrey Liu, Enliang Zheng, Jordan Marr, Andrew Carley
  • Patent number: 10620717
    Abstract: In embodiments of a camera-based input device, the input device includes an inertial measurement unit that collects motion data associated with velocity and acceleration of the input device in an environment, such as in three-dimensional (3D) space. The input device also includes at least two visual light cameras that capture images of the environment. A positioning application is implemented to receive the motion data from the inertial measurement unit, and receive the images of the environment from the at least two visual light cameras. The positioning application can then determine positions of the input device based on the motion data and the images correlated with a map of the environment, and track a motion of the input device in the environment based on the determined positions of the input device.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 14, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Daniel Joseph McCulloch, Nicholas Gervase Fajt, Adam G. Poulos, Christopher Douglas Edmonds, Lev Cherkashin, Brent Charles Allen, Constantin Dulu, Muhammad Jabir Kapasi, Michael Grabner, Michael Edward Samples, Cecilia Bong, Miguel Angel Susffalich, Varun Ramesh Mani, Anthony James Ambrus, Arthur C. Tomlin, James Gerard Dack, Jeffrey Alan Kohler, Eric S. Rehmeyer, Edward D. Parker
  • Patent number: 10379606
    Abstract: A computing device is provided, including a display configured to display a plurality of holograms superimposed upon a physical environment. The computing device may further comprise a processor configured to store in non-volatile memory a representation of the physical environment, including a plurality of hologram anchors indicating locations at which the holograms are displayed. The processor may store a priority level of each hologram anchor, wherein each priority level is selected from a plurality of priority levels including a high priority level and a low priority level, and wherein at least one hologram anchor has the low priority level. The processor may determine that a total size of the plurality of hologram anchors exceeds a predetermined size threshold. The processor may, for at least one hologram anchor assigned the low priority level, delete that hologram anchor from the representation of the physical environment.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: August 13, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Ethan Eade, Jeroen Vanturennout, Neena Kamath, Alex Christopher Turner, David Fields, Jonathan David Hildebrandt, Michael Grabner, Gavin Dean Lazarow, Tushar Cyril Bhatnagar
  • Publication number: 20180286128
    Abstract: A computing device is provided, including a display configured to display a plurality of holograms superimposed upon a physical environment. The computing device may further comprise a processor configured to store in non-volatile memory a representation of the physical environment, including a plurality of hologram anchors indicating locations at which the holograms are displayed. The processor may store a priority level of each hologram anchor, wherein each priority level is selected from a plurality of priority levels including a high priority level and a low priority level, and wherein at least one hologram anchor has the low priority level. The processor may determine that a total size of the plurality of hologram anchors exceeds a predetermined size threshold. The processor may, for at least one hologram anchor assigned the low priority level, delete that hologram anchor from the representation of the physical environment.
    Type: Application
    Filed: June 5, 2017
    Publication date: October 4, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ethan EADE, Jeroen VANTURENNOUT, Neena KAMATH, Alex Christopher TURNER, David FIELDS, Jonathan David HILDEBRANDT, Michael GRABNER, Gavin Dean LAZAROW, Tushar Cyril BHATNAGAR
  • Publication number: 20180005445
    Abstract: In embodiments of augmenting a moveable entity with a hologram, an alternate reality device includes a tracking system that can recognize an entity in an environment and track movement of the entity in the environment. The alternate reality device can also include a detection algorithm implemented to identify the entity recognized by the tracking system based on identifiable characteristics of the entity. A hologram positioning application is implemented to receive motion data from the tracking system, receive entity characteristic data from the detection algorithm, and determine a position and an orientation of the entity in the environment based on the motion data and the entity characteristic data. The hologram positioning application can then generate a hologram that appears associated with the entity as the entity moves in the environment.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Daniel Joseph McCulloch, Nicholas Gervase Fajt, Adam G. Poulos, Christopher Douglas Edmonds, Lev Cherkashin, Brent Charles Allen, Constantin Dulu, Muhammad Jabir Kapasi, Michael Grabner, Michael Edward Samples, Cecilia Bong, Miguel Angel Susffalich, Varun Ramesh Mani, Anthony James Ambrus, Arthur C. Tomlin, James Gerard Dack, Jeffrey Alan Kohler, Eric S. Rehmeyer, Edward D. Parker
  • Publication number: 20180004308
    Abstract: In embodiments of a camera-based input device, the input device includes an inertial measurement unit that collects motion data associated with velocity and acceleration of the input device in an environment, such as in three-dimensional (3D) space. The input device also includes at least two visual light cameras that capture images of the environment. A positioning application is implemented to receive the motion data from the inertial measurement unit, and receive the images of the environment from the at least two visual light cameras. The positioning application can then determine positions of the input device based on the motion data and the images correlated with a map of the environment, and track a motion of the input device in the environment based on the determined positions of the input device.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Daniel Joseph McCulloch, Nicholas Gervase Fajt, Adam G. Poulos, Christopher Douglas Edmonds, Lev Cherkashin, Brent Charles Allen, Constantin Dulu, Muhammad Jabir Kapasi, Michael Grabner, Michael Edward Samples, Cecilia Bong, Miguel Angel Susffalich, Varun Ramesh Mani, Anthony James Ambrus, Arthur C. Tomlin, James Gerard Dack, Jeffrey Alan Kohler, Eric S. Rehmeyer, Edward D. Parker