Patents by Inventor Michael Grass

Michael Grass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190209107
    Abstract: An interventional X-ray system is proposed, the system including a multi X-ray source unit positioned below a patient table. This ‘multiblock’ may comprise several x-ray sources with focal spot positions distributed along the x-y (table) plane. The x-ray sources are operable in a switching scheme in which certain x-ray sources may be activated in parallel and also sequential switching between such groups is intended. The switching may be carried out so that several images with different projection angles can be acquired in parallel. In other words, an optimal multi-beam X-ray exposure is suggested, wherein fast switching in one dimension and simultaneous exposure in the 2nd dimension is applied.
    Type: Application
    Filed: May 12, 2017
    Publication date: July 11, 2019
    Inventors: Gereon VOGTMEIER, Klaus Juergen ENGEL, Michael GRASS, Bernd MENSER, Heidrun STEINHAUSER, Alberto FAZZI, Herman STEGEHUIS, Dirk SCHAEFER
  • Publication number: 20190206069
    Abstract: A system and method of assisting a treatment procedure is provided, the method comprising the steps of determining a 3-D intervention vector in relation to an inner body structure of a body of interest based on a 3-D x-ray image, determining a 3-D position of an entry point on an outer surface of the body of interest based on the intervention vector, comparing the position and/or orientation of the inner body structure in the 3-D x-ray image with the position and/or orientation of the inner body structure in an additional 2-D x-ray image being generated transverse to the intervention vector, correcting the 3-D position of the entry point on the outer surface of the body of interest based on a deviation detected in the comparing step.
    Type: Application
    Filed: May 19, 2017
    Publication date: July 4, 2019
    Inventors: Christian BUERGER, Michael GRASS, Drazenko BABIC
  • Publication number: 20190188885
    Abstract: A medical imaging system (200) includes a masking unit (234), an image registration unit (238), a motion estimator (240) and a motion compensating reconstructor (244). The masking unit constructs a mask for each reconstructed volumetric phase image of a plurality of reconstructed volumetric phase images that masks portions of a corresponding image external to an anatomical model fitted to a segmented at least one anatomical structure, 5 wherein the plurality of reconstructed volumetric phase images include a target phase and a plurality of temporal neighboring phases reconstructed from projection data. The image registration unit registers the masked reconstructed volumetric phase images. The motion estimator estimates motion between the target phase and the plurality of temporal neighboring phases according to the model based on the registered masked reconstructed 10 volumetric phase images.
    Type: Application
    Filed: August 22, 2017
    Publication date: June 20, 2019
    Inventors: Michael GRASS, Rolf Dieter BIPPUS, Axel THRAN, Cristian BUERGER, Manindranath VEMBAR, Kevin Martin BROWN
  • Publication number: 20190169104
    Abstract: The present invention relates to a method for preparing saturated Cn- and C2n-alcohols, wherein the ratio of Cn- to C2n-alcohols is controlled by the diversion of substreams in individual method steps.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Inventors: Dirk Fridag, Robert Franke, Michael Grass, Florian Boeck, Corinna Hecht, Benedikt Dercks, Udo Lenz, Christoph Hiller, Christoph Ehlers, Stefan Münzner
  • Publication number: 20190169106
    Abstract: The present invention relates to a method for preparing saturated Cn- and C2n-alcohols, wherein the separation of the Cn-alcohols and the C2n-alcohols is effected by means of at least one two-column system or by means of at least one dividing wall column.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Inventors: Dirk Fridag, Robert Franke, Michael Grass, Florian Boeck, Corinna Hecht, Benedikt Dercks, Udo Lenz, Christoph Hiller, Christoph Ehlers, Stefan Münzner
  • Publication number: 20190169105
    Abstract: The present invention relates to a method for preparing saturated Cn- and C2n-alcohols, wherein the ratio of Cn- to C2n-alcohols is controlled by a distillative separation of the aldehydes used.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 6, 2019
    Inventors: Dirk Fridag, Robert Franke, Michael Grass, Florian Boeck, Corinna Hecht, Benedikt Dercks, Udo Lenz, Christoph Hiller, Christoph Ehlers, Stefan Münzner
  • Publication number: 20190151030
    Abstract: A measurement system for measuring a length of movement of an elongate intraluminal device. Cameras are included to obtain three dimensional video data of movement of an elongate intraluminal device by hand. The video data is processed to track the movement of the elongate intraluminal device in three dimensions to provide the length measurement of movement of the elongate intraluminal device.
    Type: Application
    Filed: July 6, 2017
    Publication date: May 23, 2019
    Inventors: Michael GRASS, Julien SENEGAS
  • Publication number: 20190133690
    Abstract: The present invention relates to a device (2) for determining an optimal placement of a pedicle screw (4), comprising a processing unit (14), wherein the processing unit is configured to receive a model data set representing a model surface (22) of a human vertebra model (18) and a pedicle screw model (30) being optimally placed in a span of a pedicle section (28) of the model surface, wherein the processing unit is configured to receive 5 image data representing a surface image (26) of at least one human vertebra (6), GO and wherein the processing unit is configured to adapt the model data set for each of a number of the at least one human vertebra, such that an adapted model data set representing a correspondingly adapted model surface (36), which fits to the surface image of the respective human vertebra, is provided for each of the number of the at least one human vertebra, wherein each of the 10 adapted model data sets also represents a correspondingly adapted pedicle screw model (38).
    Type: Application
    Filed: April 26, 2017
    Publication date: May 9, 2019
    Inventors: Christian BUERGER, Christian LORENZ, Michael GRASS
  • Patent number: 10258303
    Abstract: The invention relates to an apparatus for determining a fractional flow reserve (FFR) value of the coronary artery system of a living being (3). A fractional flow reserve value determination unit (13) determines the FFR value by using an FFR value determination algorithm that is adapted to determine the FFR value based on a boundary condition and a provided representation of the coronary artery system, wherein the boundary condition is specific for the living being and determined by a boundary condition determination unit (12). Since the boundary condition determination unit determines a boundary condition, which is specific for the living being, and since the fractional flow reserve value determination unit not only uses the provided representation of the coronary artery system, but also the living being specific boundary condition for determining the FFR value, the accuracy of the FFR value, which is non-invasively determined, can be improved.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: April 16, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael Grass, Yechiel Lamash, Liran Goshen, Holger Schmitt, Mordechay Pinchas Freiman, Hannes Nickisch, Sven Prevrhal
  • Publication number: 20190105003
    Abstract: The present invention relates to a projection values determination device (14) being adapted to determine a projection value for an x-ray of a cone beam (4) based on detection values generated by detection elements of a three-dimensional arrangement of detection elements, which have been traversed by the x-ray, and not based on a detection value generated by a detection element which has not been traversed by the x-ray. Hence, the projection values determination device does not determine a projection value for a respective x-ray based on a detection value generated by a detection element not traversed by the respective x-ray. In particular, also in the cone direction only detection values are considered for generating a projection value, which have been generated by detection elements which have really been traversed by the respective x-ray. This can lead to reduced cross talk and computed tomography images having an improved image quality.
    Type: Application
    Filed: January 19, 2017
    Publication date: April 11, 2019
    Inventors: Michael GRASS, Roland PROKSA
  • Patent number: 10251594
    Abstract: Minimally-invasive spinal inventions are often performed using fluoroscopic imaging methods, which can give a real-time impression of the location of a surgical instrument, at the expense of a small field of view. When operating on a spinal column, a small field of view can be a problem, because a medical professional is left with no reference vertebra in the fluoroscopy image, from which to identify a vertebra, which is the subject of the intervention. Identifying contiguous vertebrae is difficult because such contiguous vertebrae are similar in shape. However, characteristic features, which differentiate one vertebra from other vertebra, and which are visible in the fluoroscopic view, may be used to provide a reference.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tobias Klinder, Eberhard Sebastian Hansis, Michael Grass, Dirk Schaefer, Hanno Heyke Homann, Christian Haase
  • Publication number: 20190083052
    Abstract: The present invention relates to a device (1) for fractional flow reserve determination. The device (1) comprises a model generator (10) configured to generate a three-dimensional model (3DM) of a portion of an imaged vascular vessel tree (VVT) surrounding a stenosed vessel segment (SVS), based on a partial segmentation of the imaged vascular vessel tree (VVT). Further, the device comprises an image processor (20) configured to calculate a blood flow (Q) through the stenosed vessel segment (SVS) based on an analysis of a time-series of X-ray images of the vascular vessel tree (VVT). Still further, the device comprises a fractional-flow-reserve determiner (30) configured to determine a fractional flow reserve (FFR) based on the three-dimensional model (3DM) and the calculated blood flow.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 21, 2019
    Inventors: Hanno Heyke HOMANN, Michael GRASS, Raoul FLORENT, Holger SCHMITT, Odile BONNEFOUS, Hannes NICKISCH
  • Publication number: 20190082977
    Abstract: An apparatus is provided which improves the evaluation of a patient's vasculature by applying a correction to invasively acquired intravascular measurement data of a vessel of interest on the basis of archived patient data of said patient from a patient database. By correcting the measurement data, co-morbidities of the patient which may influence the intravascular measurement results are accounted for.
    Type: Application
    Filed: September 15, 2018
    Publication date: March 21, 2019
    Inventors: Christian HAASE, Michael GRASS, Martijn Anne VAN LAVIEREN
  • Publication number: 20190076196
    Abstract: An apparatus for modeling coronary physiology and a corresponding method are provided in which at least one diagnostic image and intravascular imaging data are co-registered and used in combination to retrieve more accurate, patient-specific vessel parameters to be used in the modeling of the vessel geometry and the fluid dynamics of the blood flow.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 14, 2019
    Inventors: Christian HAASE, Michael GRASS, Martijn Anne VAN LAVIEREN
  • Publication number: 20190076105
    Abstract: An apparatus for analyzing a vasculature of a patient and a corresponding method are provided in which a plurality of simulated hemodynamic parameter values obtained from (non-invasively) acquired diagnostic images are compared to at least one intravascular hemodynamic parameter value acquired during an invasive measurement in a vessel of interest in the vasculature. The comparison allows to uniquely determine the vessel of interest. Based on this information, the assessment of the disease and the potential treatment planning may be improved.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 14, 2019
    Inventors: Christian HAASE, Michael GRASS, Martijn Anne VAN LAVIEREN
  • Patent number: 10219772
    Abstract: The invention relates to tomographic imaging device (1). The device (1) comprises a radiation detector (3) for measuring radiation traveling through an object to be imaged, the radiation detector (3) being configured to measure radiation only at a plurality of selected sampling positions on a curved track around an axis (z). A planning unit (12) is configured to determine the selected sampling positions on the basis of an estimated contour (44; 53) of the object (21) in a plane (x-y) substantially perpendicular to the axis (z). Further, the invention relates to a method for operating the device (1). The invention is particularly applicable in computed tomography imaging.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael Grass, Thomas Koehler
  • Publication number: 20190059839
    Abstract: The invention relates to an apparatus configured to display an aortic valve image and an indicator when the aortic valve is in its open-state and/or when the valve is in its closed-state. The indicator is supposed to be in an overlay to the image of the aortic valve, such that a physician can see on the same display image the information needed to advance a guide wire or catheter through the aortic valve of a heart. This may prevent damaging ensures not to damage the aortic valve. The physician receives the relevant information, when the aortic valve is in its open-state and thus being in a state to be passed by the catheter. The information, whether the aortic valve is in its open-state or in its closed-state, corresponds to the systolic phase and the distal phase of the heart, respectively. The information, when the heart is in its systolic phase and when it is in the diastolic phase may be extracted from an ECG measurement.
    Type: Application
    Filed: October 27, 2016
    Publication date: February 28, 2019
    Inventors: Dirk SCHAEFER, Cherif SAHYOUN, Eberhard Sebastian HANSIS, Christian HAASE, Tobias KLINDER, Michael GRASS
  • Patent number: 10213167
    Abstract: A method includes obtaining a set of energy dependent data generated from a spectral scan. The set of energy dependent data includes a sub-set of data corresponding to only contrast agent. The method further includes separating the sub-set of data from other data of the energy dependent data. The other data includes non-contrast agent data. The method further includes scaling the sub-set of data to change a concentration of the contrast agent in the sub-set of data from that of the sub-set of data. The method further includes visually presenting at least the scaled sub-set of data.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: February 26, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Dieter Bippus, Thomas Koehler, Michael Grass
  • Publication number: 20190046047
    Abstract: The invention discloses an apparatus (2), a system (1) and a method (100) for characterization of vessels and for vessel modeling. The cross sectional area (A1) of the vessel is derived from pressure measurements (p1, p2) obtained by an instrument (3) from within the vessel. When multiple cross sectional areas (A1, A2) are derived for multiple reference positions (r1, r2) based on pressure measurements (p1, p2, p3) along the vessel, a representation (20, 30) of the vessel can be rendered, without requiring any imaging modality. Furthermore, the effect of the pulsatile blood flow on the elasticity of the vessel walls can be visualized, supporting assessment of a stenosis or an aneurysm formation along the vessel.
    Type: Application
    Filed: February 28, 2017
    Publication date: February 14, 2019
    Inventors: Christian HAASE, Michael GRASS, Dirk SCHAEFER
  • Patent number: 10172574
    Abstract: An interventional X-ray system (10), includes a processing unit (30), a table (20) for receiving a patient (44), an X-ray image acquisition device (12) having an X-ray source (16) and an X-ray detector (18) and at least one optical camera (46) adapted for acquiring optical images of a patient (44) situated on the table (20) and for providing image data to the processing unit (30). The processing unit (30) is adapted for segmenting an outline (64) of a patient from an existing three-dimensional model, for receiving acquired images from the at least one camera (46) for determining an optical outline (66) of the patient, for registering the optical outline (66) to the outline (64) obtained in the segmentation and for determining a translation vector (48) representing a required movement of the table for coinciding a center (42) of the anatomy of interest given in the three-dimensional model with the iso-center (38) of a rotational X-ray scan that will be performed.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: January 8, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Dirk Schäfer, Robert Johannes Frederik Homan, Michael Grass