Patents by Inventor Michael Guidi

Michael Guidi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7875379
    Abstract: An electrochemical cell comprising a cathode material contacted to a perforated current collector having a portion left uncovered and an anode material contacted to an anode current collector is described. A separator sheet segregating the anode from direct contact with the cathode is folded back upon itself along a crease with an upper portion at least partially sealed to a lower portion along an aligned peripheral edge to form an envelope. A first envelope portion houses the cathode having the uncovered portion of the cathode current collector spaced from the crease and a second envelope portion houses the anode. The first envelope portion is sealed to the second envelope portion through the uncovered perforations of the cathode current collector to lock the anode aligned with the cathode. The anode and cathode are then wound into a jellyroll electrode assembly housed in a cylindrical casing and activated with an electrolyte.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: January 25, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Kenneth Moceri, Tina Urso, Paul Hallifax, Raymond Konopa, Scott Hall, Deborah McNally, Daniel Baumer, Dominick Frustaci, Philip Wutz, Shenandoah Hennrich, John Skoumpris, Michael Guidi, Brian Mau
  • Patent number: 7867293
    Abstract: A method of manufacturing an electrochemical cell is described. A separator sheet segregating the anode from direct contact with the cathode is folded back upon itself along a crease with an upper portion at least partially sealed to a lower portion along an aligned peripheral edge to form an envelope. A first envelope portion houses the cathode having an uncovered portion of the cathode current collector spaced from the crease and a second envelope portion houses the anode. The first envelope portion is sealed to the second envelope portion through uncovered perforations of the cathode current collector to lock the anode aligned with the cathode. The anode and cathode are then wound into a jellyroll electrode assembly housed in a cylindrical casing and activated with an electrolyte.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 11, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Kenneth Moceri, Tina Urso, Paul Hallifax, Raymond Konopa, Scott Hall, Deborah McNally, Daniel Baumer, Dominick Frustaci, Philip Wutz, Shenandoah Henrich, John Skoumpris, Michael Guidi, Brian Mau
  • Publication number: 20070009789
    Abstract: An electrochemical cell comprising a cathode material contacted to a perforated current collector having a portion left uncovered and an anode material contacted to an anode current collector is described. A separator sheet segregating the anode from direct contact with the cathode is folded back upon itself along a crease with an upper portion at least partially sealed to a lower portion along an aligned peripheral edge to form an envelope. A first envelope portion houses the cathode having the uncovered portion of the cathode current collector spaced from the crease and a second envelope portion houses the anode. The first envelope portion is sealed to the second envelope portion through the uncovered perforations of the cathode current collector to lock the anode aligned with the cathode. The anode and cathode are then wound into a jellyroll electrode assembly housed in a cylindrical casing and activated with an electrolyte.
    Type: Application
    Filed: July 8, 2005
    Publication date: January 11, 2007
    Inventors: Kenneth Moceri, Tina Urso, Paul Hallifax, Raymond Konopa, Scott Hall, Deborah McNally, Daniel Baumer, Dominick Frustaci, Philip Wutz, Shenandoah Hennrich, John Skoumpris, Michael Guidi, Brian Mau
  • Patent number: 6788524
    Abstract: A drop-fill assembly and method for uniformly distributing electrode active particles onto a current collector is described. The drop-fill assembly comprises a conduit containing two or more spaced apart sifting screens. A funnel is located upstream of the sifting screens to distribute an electrode active powder into the center of the conduit with a downward velocity. The mesh of any one sifting screen is out of direct alignment with respect to the next or previous screen. The electrode active powder is poured into the funnel and distributed across the conduit's cross-section as it bounces off and passes through the misaligned sifting screens. The powder exits at the bottom of the conduit lying in a thin, uniform layer on a current collector, taking on the shape of the desired electrode due to the boundary of the conduit and pressing fixtures located above and beneath the current collector. The powder layer is then pressed on to the current collector to produce an electrode.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: September 7, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Tina Urso, Dominick Frustaci, Michael Guidi
  • Publication number: 20040115522
    Abstract: A drop-fill assembly and method for uniformly distributing electrode active particles onto a current collector is described. The drop-fill assembly comprises a conduit containing two or more spaced apart sifting screens. A funnel is located upstream of the sifting screens to distribute an electrode active powder into the center of the conduit with a downward velocity. The mesh of any one sifting screen is out of direct alignment with respect to the next or previous screen. The electrode active powder is poured into the funnel and distributed across the conduit's cross-section as it bounces off and passes through the misaligned sifting screens. The powder exits at the bottom of the conduit lying in a thin, uniform layer on a current collector, taking on the shape of the desired electrode due to the boundary of the conduit and pressing fixtures located above and beneath the current collector. The powder layer is then pressed on to the current collector to produce an electrode.
    Type: Application
    Filed: October 9, 2003
    Publication date: June 17, 2004
    Inventors: Tina Urso, Dominick Frustaci, Michael Guidi