Patents by Inventor Michael Hartley Freedman

Michael Hartley Freedman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11797872
    Abstract: A quantum prediction AI system includes a quantum prediction circuit adapted to receive an input vector representing a subset of a time-sequential sequence; encode the input vector as a corresponding qubit register; apply a trained quantum circuit to the qubit register; and measure one or more qubits output from the quantum prediction circuit to infer a next data point in the series following the subset represented by the input vector.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 24, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Alexei V. Bocharov, Eshan Kemp, Michael Hartley Freedman, Martin Roetteler, Krysta Marie Svore
  • Publication number: 20220374239
    Abstract: In a quantum-computation method, quantum-computer code is received for execution on a quantum computer. The quantum computer includes a plurality of qubits associated with a corresponding plurality of particles, and the plurality of particles define a quantum state. The quantum-computer code is decomposed into a sequence of operations including a total spin-state measurement on particles corresponding to two or more of the qubits. Then the sequence of operations is applied on the plurality of particles to thereby transform the quantum state according to the quantum-computer code initially received.
    Type: Application
    Filed: April 30, 2021
    Publication date: November 24, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley FREEDMAN, Matthew Benjamin HASTINGS, Modjtaba SHOKRIAN ZINI
  • Publication number: 20210089953
    Abstract: A quantum prediction AI system includes a quantum prediction circuit adapted to receive an input vector representing a subset of a time-sequential sequence; encode the input vector as a corresponding qubit register; apply a trained quantum circuit to the qubit register; and measure one or more qubits output from the quantum prediction circuit to infer a next data point in the series following the subset represented by the input vector.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 25, 2021
    Inventors: Alexei V. BOCHAROV, Eshan KEMP, Michael Hartley FREEDMAN, Martin ROETTELER, Krysta Marie SVORE
  • Patent number: 10692010
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: June 23, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Patent number: 10665701
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Grant
    Filed: September 3, 2018
    Date of Patent: May 26, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekėnas
  • Publication number: 20200027971
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas
  • Publication number: 20200027030
    Abstract: The disclosure relates to a quantum device and method of fabricating the same. The device comprises one or more semiconductor-superconductor nanowires, each comprising a length of semiconductor material and a coating of superconductor material coated on the semiconductor material. The nanowires may be formed over a substrate. In a first aspect at least some of the nanowires are full-shell nanowires with superconductor material being coated around a full perimeter of the semiconductor material along some or all of the length of the wire, wherein the device is operable to induce at least one Majorana zero mode, MZM, in one or more active ones of the full-shell nanowires. In a second aspect at least some of the nanowires are arranged vertically relative to the plane of the substrate in the finished device.
    Type: Application
    Filed: September 3, 2018
    Publication date: January 23, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Hartley Freedman, Bernard van Heck, Georg Wolfgang Winkler, Torsten Karzig, Roman Lutchyn, Peter Krogstrup Jeppesen, Chetan Nayak, Charles Masamed Marcus, Saulius Vaitiekenas