Patents by Inventor Michael Holynski

Michael Holynski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134084
    Abstract: An apparatus for generating vertically separated atom clouds. The apparatus comprises an optical system comprising an arrangement of lenses and optics. The optical system is configured to trap and cool atoms to form a cold atom cloud; select the hyperfine level of the atoms; trap atoms of the cold atom cloud in a standing wave optical lattice; and vertically split the cold atom cloud into a high cold atom cloud and a low cold atom cloud. The splitting comprises splitting the cold atom cloud into two clouds by launching atoms of the cold atom cloud in opposite directions to form a high cold atom cloud and a low cold atom cloud, and catching the low cold atom cloud up to reach the same velocity as the high cold atom cloud.
    Type: Application
    Filed: February 11, 2022
    Publication date: April 25, 2024
    Applicant: The University of Birmingham
    Inventors: Kai BONGS, Mehdi LANGLOIS, Luuk EARL, Michael HOLYNSKI
  • Publication number: 20240136785
    Abstract: A single arm laser system comprising a first in-phase quadrature modulator, IQM. The first IQM is configured to receive a single frequency fibred laser beam from a frequency locked laser seed, generate a first single side-band frequency based on a carrier frequency of the single frequency fibred laser beam and suppress the carrier frequency, and output a first fibre laser beam having a single side-band suppressed carrier frequency. The single arm laser system also comprises a second IQM in line with the first IQM. The second IQM is configured to receive the first fibre laser beam from the first IQM, generate a second single side-band frequency based on the first single side-band frequency and maintain the first single side-band frequency as the carrier frequency, and output a second fibre laser beam having the first and second single side band frequencies.
    Type: Application
    Filed: February 11, 2022
    Publication date: April 25, 2024
    Applicant: The University of Birmingham
    Inventors: Kai BONGS, Mehdi LANGLOIS, Luuk EARL, Michael HOLYNSKI
  • Publication number: 20230288183
    Abstract: The application discloses an atom interferometer comprising an optical cavity and method of operation thereof. The atom interferometer includes a vacuum chamber, an optical cavity, a source for providing a cloud of atoms in the optical cavity in use, and one or more light sources. The one or more light sources are for generating, in the cavity, in use a first light beam having a first polarisation and at a first frequency for a two-photon interaction in the atoms; and a counterpropagating second light beam having a second polarisation orthogonal to the first polarisation and at a second frequency for the two-photon interaction in the atoms.
    Type: Application
    Filed: July 19, 2021
    Publication date: September 14, 2023
    Inventors: Kai BONGS, Michael HOLYNSKI, Rustin NOURSHARGH
  • Patent number: 11303088
    Abstract: An optical frequency manipulation using an optical subsystem configured to provide a modulated laser beam for interaction with an atomic sample. The optical system may include: an optical subsystem for producing a light beam, the optical subsystem having a laser source and an IQ modulator, wherein the IQ modulator is operable to modulate light from the laser source at a carrier frequency to produce modulated light having a single sideband at a sideband frequency; and a chamber for containing an atomic sample, wherein the optical subsystem is arranged to direct the light beam towards the chamber to interact with an atomic sample contained therein.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: April 12, 2022
    Assignee: THE UNIVERSITY OF BIRMINGHAM
    Inventors: Yu-Hung Lien, Michael Holynski, Lingxiao Zhu, Kai Bongs
  • Patent number: 11269111
    Abstract: The disclosure relates to a gravity gradiometer including a pair of magneto-optical traps for measuring a gravity gradient. A cold atom gravity gradiometer system includes comprising: first and second magneto-optical traps, each having a plurality of mirrored surfaces arranged to reflect an incident laser beam to trap respective first and second cold atom clouds separated from each other by a separation distance; an optical subsystem arranged to transmit a first laser beam in a first direction along a first longitudinal axis towards the first magneto-optical trap and a second laser beam in an opposite second direction along a second longitudinal axis towards the second magneto-optical trap, the second longitudinal axis being parallel to the first longitudinal axis.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 8, 2022
    Assignee: THE UNIVERSITY OF BIRMINGHAM
    Inventors: Andrew Lamb, Geoff De Villiers, Michael Holynski, Kai Bongs
  • Publication number: 20200395726
    Abstract: An optical frequency manipulation using an optical subsystem configured to provide a modulated laser beam for interaction with an atomic sample. The optical system may include: an optical subsystem for producing a light beam, the optical subsystem having a laser source and an IQ modulator, wherein the IQ modulator is operable to modulate light from the laser source at a carrier frequency to produce modulated light having a single sideband at a sideband frequency; and a chamber for containing an atomic sample, wherein the optical subsystem is arranged to direct the light beam towards the chamber to interact with an atomic sample contained therein.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 17, 2020
    Inventors: Yu-Hung Lien, Michael Holynski, Lingxiao Zhu, Kai Bongs
  • Publication number: 20200386906
    Abstract: The disclosure relates to a gravity gradiometer including a pair of magneto-optical traps for measuring a gravity gradient. A cold atom gravity gradiometer system includes comprising: first and second magneto-optical traps, each having a plurality of mirrored surfaces arranged to reflect an incident laser beam to trap respective first and second cold atom clouds separated from each other by a separation distance; an optical subsystem arranged to transmit a first laser beam in a first direction along a first longitudinal axis towards the first magneto-optical trap and a second laser beam in an opposite second direction along a second longitudinal axis towards the second magneto-optical trap, the second longitudinal axis being parallel to the first longitudinal axis.
    Type: Application
    Filed: December 14, 2018
    Publication date: December 10, 2020
    Inventors: Andrew Lamb, Geoff De Villiers, Michael Holynski, Kai Bongs