Patents by Inventor Michael Iacov Katz

Michael Iacov Katz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150368276
    Abstract: Vapochromic coordination polymers useful for analyte detection are provided. The vapochromism may be observed by visible color changes, changes in luminescence, and/or spectroscopic changes, for example in the infrared (IR) or Raman signatures. One or more of the above chromatic changes may be relied upon to identify a specific analyte, such as a volatile organic compound or a gas. The chromatic changes may be reversible to allow for successive analysis of different analytes. The coordination polymer has the general formula MW[M?X(Z)Y]N wherein M and M? are the same or different metals capable of forming a coordinate complex with the Z moiety; Z is selected from the group consisting of halides, pseudohalides, thiolates, alkoxides and amides; W is between 1-6; X and Y are between 1-9; and N is between 1-5. One embodiment provides [Metal(CN)2]-based coordination polymers with vapochromic properties, such as Cu[Au(CN)2]2 and Zn[Au(CN)2]2 polymers.
    Type: Application
    Filed: July 15, 2015
    Publication date: December 24, 2015
    Inventors: Jeffrey Scott OVENS, Ania Shantel SERGEENKO, Bryton Ray VARJU, Matthew Lachlan BROWN, Daniel Bernard LEZNOFF, Julie LEFEBVRE, Michael Iacov KATZ
  • Publication number: 20120115239
    Abstract: Vapochromic coordination polymers useful for analyte detection are provided. The vapochromism may be observed by visible color changes, changes in luminescence, and/or spectroscopic changes in the infrared (IR) signature. One or more of the above chromatic changes may be relied upon to identify a specific analyte, such as a volatile organic compound or a gas. The chromatic changes may be reversible to allow for successive analysis of different analytes. The polymer has the general formula MW[M?X(Z)Y]N wherein M and M? are the same or different metals capable of forming a coordinate complex with the Z moiety; Z is selected from the group consisting of halides, pseudohalides, thiolates, alkoxides and amides; W is between 1-6; X and Y are between 1-9; and N is between 1-5. One embodiment provides [Metal(CN)2]-based coordination polymers with vapochromic properties, such as Cu[Au(CN)2]2 and Zn[Au(CN)2]2 polymers.
    Type: Application
    Filed: October 21, 2011
    Publication date: May 10, 2012
    Inventors: Julie LEFEBVRE, Michael Iacov KATZ, Daniel B. LEZNOFF
  • Patent number: 8043860
    Abstract: This application relates to vaprochromic coordination polymers useful for analyte detection. The vapochromism may be observed by visible color changes, changes in luminescence, and/or spectroscopic changes in the infrared (IR) signature. One or more of the above chromatic changes may be relied upon to identify a specific analyte, such as a volatile organic compound or a gas. The chromatic changes may be reversible to allow for successive analysis of different analytes using the same polymer. The polymer has the general formula MW[M?X(Z)Y]N wherein M and M? are the same or different metals capable of forming a coordinate complex with the Z moiety; Z is selected from the group consisting of halides, pseudohalides, thiolates, alkoxides and amides; W is between 1-6; X and Y are between 1-9; and N is between 1-5. Optionally, an organic ligand may be bound to M. In alternative embodiments of the invention M may be a transition metal, such as Cu and Zn.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: October 25, 2011
    Assignee: Simon Fraser University
    Inventors: Julie Lefebvre, Michael Iacov Katz, Daniel B. Leznoff
  • Patent number: 8008090
    Abstract: This application relates to vaprochromic coordination polymers useful for analyte detection. The vapochromism may be observed by visible color changes, changes in luminescence, and/or spectroscopic changes in the infrared (IR) signature. One or more of the above chromatic changes may be relied upon to identify a specific analyte, such as a volatile organic compound or a gas. The chromatic changes may be reversible to allow for successive analysis of different analytes using the same polymer. The polymer has the general formula MW[M?X(Z)Y]N wherein M and M? are the same or different metals capable of forming a coordinate complex with the Z moiety; Z is selected from the group consisting of halides, pseudohalides, thiolates, alkoxides and amides; W is between 1-6; X and Y are between 1-9; and N is between 1-5. Optionally, an organic ligand may be bound to M.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: August 30, 2011
    Assignee: Simon Fraser University
    Inventors: Julie Lefebvre, Michael Iacov Katz, Daniel B. Leznoff
  • Publication number: 20090242856
    Abstract: This application relates to metal-containing coordination polymers having high birefringent values. For example, polymers having birefringent values within the range of 0.07 to 0.45 are described. The polymers may comprise units having the formula M(L)X[M?(Z)Y]N, wherein M and M? are the same or different metals capable of forming a coordinate complex with the Z moiety; L is a ligand; Z is selected from the group consisting of halides, pseudohalides, thiolates, alkoxides and amides; X is between 0-12; Y is between 2-9; and N is between 1-5. In particular embodiments of the invention L may be a highly anisotropic organic ligand, such as terpyridine, and Z may be a pseudohalide, such as CN. The invention also includes methods for synthesizing the coordination polymers and use of the polymers in birefringent materials and devices. In one embodiment the polymers may be processible into thin films.
    Type: Application
    Filed: February 9, 2007
    Publication date: October 1, 2009
    Applicant: SIMON FRASER UNIVERSITY
    Inventors: Daniel Bernard Leznoff, Michael Iacov Katz
  • Publication number: 20090130768
    Abstract: This application relates to vaprochromic coordination polymers useful for analyte detection. The vapochromism may be observed by visible color changes, changes in luminescence, and/or spectroscopic changes in the infrared (IR) signature. One or more of the above chromatic changes may be relied upon to identify a specific analyte, such as a volatile organic compound or a gas. The chromatic changes may be reversible to allow for successive analysis of different analytes using the same polymer. The polymer has the general formula MW[M?X(Z)Y]N wherein M and M? are the same or different metals capable of forming a coordinate complex with the Z moiety; Z is selected from the group consisting of halides, pseudohalides, thiolates, alkoxides and amides; W is between 1-6; X and Y are between 1-9; and N is between 1-5. Optionally, an organic ligand may be bound to M. In alternative embodiments of the invention M may be a transition metal, such as Cu and Zn.
    Type: Application
    Filed: July 8, 2008
    Publication date: May 21, 2009
    Applicant: SIMON FRASER UNIVERSITY
    Inventors: Julie LEFEBVRE, Michael Iacov KATZ, Daniel B. LEZNOFF