Patents by Inventor Michael Iza

Michael Iza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8193079
    Abstract: A method of controlled p-type conductivity in (Al,In,Ga,B)N semiconductor crystals. Examples include {10 11} GaN films deposited on {100} MgAl2O4 spinel substrate miscut in the <011> direction. Mg atoms may be intentionally incorporated in the growing semipolar nitride thin film to introduce available electronic states in the band structure of the semiconductor crystal, resulting in p-type conductivity. Other impurity atoms, such as Zn or C, which result in a similar introduction of suitable electronic states, may also be used.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: June 5, 2012
    Assignee: The Regents of the University of California
    Inventors: John F. Kaeding, Hitoshi Sato, Michael Iza, Hirokuni Asamizu, Hong Zhong, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8183557
    Abstract: A nitride light emitting diode, on a patterned substrate, comprising a nitride interlayer having at least two periods of alternating layers of InxGa1?xN and InyGa1?yN where 0<x<1 and 0?y<1, and a nitride based active region having at least one quantum well structure on the nitride interlayer.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: May 22, 2012
    Assignee: The Regents of the University of California
    Inventors: Michael Iza, Hitoshi Sato, Eu Jin Hwang, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120104411
    Abstract: A method for fabricating a III-nitride semiconductor film, comprising depositing or growing a III-nitride semiconductor film in a semiconductor light absorbing or light emitting device structure; and growing a textured or structured surface of the III-nitride nitride semiconductor film in situ with the growing or the deposition of the III-nitride semiconductor film, by controlling the growing of the III-nitride semiconductor film to obtain a texture of the textured surface, or one or more structures of the structured surface, that increase output power of light from the light emitting device, or increase absorption of light in the light absorbing device.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 3, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael Iza, Carl J. Neufeld, Samantha C. Cruz, Robert M. Farrell, James S. Speck, Shuji Nakamura, Steven P. DenBaars, Umesh K. Mishra
  • Publication number: 20120074525
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: December 6, 2011
    Publication date: March 29, 2012
    Applicants: JAPAN SCIENCE AND TECHNOLOGY AGENCY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 8110482
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 7, 2012
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100219416
    Abstract: A method for improving the growth morphology of (Ga,Al,In,B)N thin films on nonpolar or semipolar (Ga,Al,In,B)N substrates, wherein a (Ga,Al,In,B)N thin film is grown directly on a nonpolar or semipolar (Ga,Al,In,B)N substrate or template and a portion of the carrier gas used during growth is comprised of an inert gas. Nonpolar or semipolar nitride LEDs and diode lasers may be grown on the smooth (Ga,Al,In,B)N thin films grown by the present invention.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 2, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Robert M. Farrell, Michael Iza, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100199914
    Abstract: A chemical vapor deposition reactor is provided which includes a process chamber accommodating a substrate holder for multiple substrates, and a reactor gas inlet which supplies the reactant gases to a portion above the surface of the heated substrates. The reactant gases can be injected parallel or oblique to the substrates and the angle between the supplied reactant gas flow direction and the tangential component of the susceptor's angular rotation is independent of the susceptor's position. A secondary gas inlet which supplies gases perpendicular or at a sharp angle to the substrates is also included so as to change the boundary layer thickness created when hot gases come into contact with the colder reactant gases flowing parallel or oblique to the surface of the substrates.
    Type: Application
    Filed: May 9, 2008
    Publication date: August 12, 2010
    Inventor: Michael Iza
  • Publication number: 20100155778
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al, In, Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hitoshi Sato, John F. Kaeding, Michael Iza, Troy J. Baker, Benjamin A. Haskell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100148195
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: February 22, 2010
    Publication date: June 17, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hiroshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 7709284
    Abstract: A method for growing an improved quality device by depositing a low temperature (LT) magnesium (Mg) doped nitride semiconductor thin film. The low temperature Mg doped nitride semiconductor thin film may have a thickness greater than 50 nm. A multi quantum well (MQW) active layer may be grown at a growth temperature and the LT Mg doped nitride semiconductor thin film may deposited on the MQW active layer at a substrate temperature no greater than 150° C. above the growth temperature.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: May 4, 2010
    Assignee: The Regents of the University of California
    Inventors: Michael Iza, Hitoshi Sato, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 7691658
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1?xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1?xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 6, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: John F. Kaeding, Dong-Seon Lee, Michael Iza, Troy J. Baker, Hitoshi Sato, Benjamin A. Haskell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 7687293
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al,In,Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: March 30, 2010
    Assignee: The Regents of the University of California
    Inventors: Hiroshi Sato, John F. Kaeding, Michael Iza, Troy J. Baker, Benjamin A. Haskell, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 7575947
    Abstract: A method for growing a semi-polar nitride semiconductor thin film via metalorganic chemical vapor deposition (MOCVD) on a substrate, wherein a nitride nucleation or buffer layer is grown on the substrate prior to the growth of the semi-polar nitride semiconductor thin film.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 18, 2009
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Michael Iza, Troy J. Baker, Benjamin A. Haskell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20090184342
    Abstract: A method for growing a semi-polar nitride semiconductor thin film via metalorganic chemical vapor deposition (MOCVD) on a substrate, wherein a nitride nucleation or buffer layer is grown on the substrate prior to the growth of the semi-polar nitride semiconductor thin film.
    Type: Application
    Filed: September 8, 2006
    Publication date: July 23, 2009
    Inventors: Michael Iza, Troy J. Baker, Benjamin A. Haskell, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20090072262
    Abstract: A nitride light emitting diode, on a patterned substrate, comprising a nitride interlayer having at least two periods of alternating layers of InxGa1-xN and InyGa1-yN where 0<x<1 and 0?y<1, and a nitride based active region having at least one quantum well structure on the nitride interlayer.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 19, 2009
    Applicant: The Regents of the University of California
    Inventors: Michael Iza, Hitoshi Sato, Eu Jin Hwang, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20080283854
    Abstract: A light emitting diode device layer structure including a p-type contact layer that contains at least some indium (In), wherein the p-type contact layer is a not-intentionally doped strained nitride contact layer.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 20, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael Iza, Hirokuni Asamizu, Christian G. Van de Walle, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20080251802
    Abstract: A method for growing an improved quality nitride thin film on a patterned substrate is disclosed, wherein the nitride film is grown at atmospheric pressure. A nitride template is disclosed, comprising a patterned substrate and a one or more nitride layer direct growth off of the patterned substrate, comprising no lateral epitaxial overgrowth regions and a substantially coalesced surface smooth enough for subsequent deposition of light emitting device quality nitride layers onto the surface. A light emitting diode comprising the nitride film is also disclosed.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 16, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael Iza, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20080042121
    Abstract: A method for growing an improved quality device by depositing a low temperature (LT) magnesium (Mg) doped nitride semiconductor thin film. The low temperature Mg doped nitride semiconductor thin film may have a thickness greater than 50 nm. A multi quantum well (MQW) active layer may be grown at a growth temperature and the LT Mg doped nitride semiconductor thin film may deposited on the MQW active layer at a substrate temperature no greater than 150° C. above the growth temperature.
    Type: Application
    Filed: August 16, 2007
    Publication date: February 21, 2008
    Inventors: Michael Iza, Hitoshi Sato, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20070218655
    Abstract: A method for enhancing growth of device-quality planar semipolar nitride semiconductor thin films via metalorganic chemical vapor deposition (MOCVD) by using an (Al,In,Ga)N nucleation layer containing at least some indium. Specifically, the method comprises loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1?xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1?xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: January 19, 2007
    Publication date: September 20, 2007
    Inventors: Hitoshi Sato, John Kaeding, Michael Iza, Troy Baker, Benjamin Haskell, Steven DenBaars, Shuji Nakamura
  • Publication number: 20070218703
    Abstract: A method for improved growth of a semipolar (Al,In,Ga,B)N semiconductor thin film using an intentionally miscut substrate. Specifically, the method comprises intentionally miscutting a substrate, loading a substrate into a reactor, heating the substrate under a flow of nitrogen and/or hydrogen and/or ammonia, depositing an InxGa1-xN nucleation layer on the heated substrate, depositing a semipolar nitride semiconductor thin film on the InxGa1-xN nucleation layer, and cooling the substrate under a nitrogen overpressure.
    Type: Application
    Filed: January 19, 2007
    Publication date: September 20, 2007
    Inventors: John Kaeding, Dong-Seon Lee, Michael Iza, Troy Baker, Hitoshi Sato, Benjamin Haskell, James Speck, Steven DenBaars, Shuji Nakamura