Patents by Inventor Michael J. Aziz

Michael J. Aziz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150243991
    Abstract: The invention provides an electrochemical cell based on a new chemistry for a flow battery for large scale, e.g., grid-scale, electrical energy storage. Electrical energy is stored chemically at an electrochemical electrode by the protonation of small organic molecules called quinones to hydroquinones. The proton is provided by a complementary electrochemical reaction at the other electrode. These reactions are reversed to deliver electrical energy. A flow battery based on this concept can operate as a closed system. The flow battery architecture has scaling advantages over solid electrode batteries for large scale energy storage.
    Type: Application
    Filed: September 26, 2013
    Publication date: August 27, 2015
    Applicant: President and Fellows of Harvard College
    Inventors: Brian Huskinson, Michael Marshak, Michael J. Aziz, Roy G. Gordon, Theodore A. Betley, Alan Aspuru-Guzik, Suleyman Er, Changwon Suh
  • Patent number: 8969183
    Abstract: Method for making thin crystalline or polycrystalline layers. The method includes electrochemically etching a crystalline silicon template to form a porous double layer thereon, the double layer including a highly porous deeper layer and a less porous shallower layer. The shallower layer is irradiated with a short laser pulse selected to recrystallize the shallower layer resulting in a crystalline layer. Silicon is deposited on the recrystallized shallower layer and the silicon is irradiated with a short laser pulse selected to crystalize the silicon leaving a layer of crystallized silicon on the template. Thereafter, the layer of crystallized silicon is separated from the template. The process of the invention can be used to make optoelectronic devices.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 3, 2015
    Assignees: President and Fellows of Harvard College, Massachusetts Institute of Technology
    Inventors: Mark T. Winkler, Tonio Buonassisi, Riley E. Brandt, Michael J. Aziz, Austin Joseph Akey
  • Patent number: 8835852
    Abstract: A manufacture having an electrical response to incident photons includes a semiconductor substrate; a chalcogen-doped semiconductor active layer on a first side of the substrate; a first contact in electrical contact with the active layer; and a second contact in electrical contact with the substrate; wherein, photons incident upon the active layer cause a variation in current between the first and second contacts.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 16, 2014
    Assignees: President and Fellows of Harvard College, U.S. Army RDECOM-ARDEC
    Inventors: Aurore J. Said, Daniel L. Recht, Jeffrey M. Warrender, Michael J. Aziz
  • Publication number: 20130288463
    Abstract: Method for making thin crystalline or polycrystalline layers. The method includes electrochemically etching a crystalline silicon template to form a porous double layer thereon, the double layer including a highly porous deeper layer and a less porous shallower layer. The shallower layer is irradiated with a short laser pulse selected to recrystallize the shallower layer resulting in a crystalline layer. Silicon is deposited on the recrystallized shallower layer and the silicon is irradiated with a short laser pulse selected to crystalize the silicon leaving a layer of crystallized silicon on the template. Thereafter, the layer of crystallized silicon is separated from the template. The process of the invention can be used to make optoelectronic devices.
    Type: Application
    Filed: October 25, 2012
    Publication date: October 31, 2013
    Inventors: Mark T. Winkler, Tonio Buonassisi, Riley E. Brandt, Michael J. Aziz, Austin Joseph Akey
  • Publication number: 20130230794
    Abstract: A catalytic electrode may include a complex oxide deposited on a substrate. The complex oxide maybe an oxide of an alloy of ruthenium and another less expensive metal, including without limitation cobalt and manganese. The percentage of ruthenium in the complex oxide can be reduced to about 20 percent or less, while still allowing the electrode to maintain adequate electrocatalytic activity during redox reactions at the electrode. Electrodes can be synthesized using RuCo oxides with ruthenium content reduced to about 5%, or using RuMn oxides having ruthenium content reduced to about 10%, while maintaining good catalytic activity. These electrodes may be used in electrochemical cells including without limitation fuel cells, flow batteries and regenerative fuel cells such as halogen fuel cells or hydrogen-halogen fuel cells. These electrodes may also be used in electrolytic cells.
    Type: Application
    Filed: July 8, 2011
    Publication date: September 5, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Sujit Kumar Mondal, Jason S. Rugolo, Brian Huskinson, Michael J. Aziz
  • Publication number: 20120262701
    Abstract: A manufacture having an electrical response to incident photons includes a semiconductor substrate; a chalcogen-doped semiconductor active layer on a first side of the substrate; a first contact in electrical contact with the active layer; and a second contact in electrical contact with the substrate; wherein, photons incident upon the active layer cause a variation in current between the first and second contacts.
    Type: Application
    Filed: January 7, 2011
    Publication date: October 18, 2012
    Applicants: U.S. ARMY RDECOM-ARDEC, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Aurore J. Said, Daniel L. Recht, Jeffrey M. Warrender, Michael J. Aziz
  • Publication number: 20110135551
    Abstract: Processes for capturing carbon dioxide are described. The carbon dioxide may be captured from the atmosphere and/or from the waste stream of a carbon dioxide point source (e.g., power plants, chemical plants, natural gas fields, oil fields, industrial sites, etc.). The processes can involve capturing carbon dioxide using alkaline solutions (e.g., NaOH). In some processes, the carbon dioxide may react with the alkaline solution to form a product (e.g., NaHCO3). The alkaline solution may be made a number of different ways. In some of the processes, products produced during processing may be used to add value beyond carbon dioxide capture.
    Type: Application
    Filed: January 11, 2011
    Publication date: June 9, 2011
    Applicants: President and Fellows of Harvard College, The Penn State Research Foundation
    Inventors: Kurt Z. House, Christopher H. House, Michael J. Aziz, Daniel Paul Schrag
  • Publication number: 20100051859
    Abstract: Processes for capturing carbon dioxide are described. The carbon dioxide may be captured from the atmosphere and/or from the waste stream of a carbon dioxide point source (e.g., power plants, chemical plants, natural gas fields, oil fields, industrial sites, etc.). The processes can involve capturing carbon dioxide using alkaline solutions (e.g., NaOH). In some processes, the carbon dioxide may react with the alkaline solution to form a product (e.g., NaHCO3). The alkaline solution may be made a number of different ways. In some of the processes, products produced during processing may be used to add value beyond carbon dioxide capture.
    Type: Application
    Filed: April 26, 2007
    Publication date: March 4, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Kurt Z. House, Christopher H. House, Michael J. Aziz, Daniel Paul Schrag
  • Patent number: 6783643
    Abstract: A solid state structure having a surface is provided and exposed to a flux, F, of incident ions under conditions that are selected based on: ∂ ∂ t ⁢ C ⁡ ( r , t ) = F ⁢   ⁢ Y 1 + D ⁢ ∇ 2 ⁢ C - C τ trap - F ⁢   ⁢ C ⁢   ⁢ &sigm
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: August 31, 2004
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Daniel Branton, Michael J. Aziz, Jiali Li, Derek M. Stein, Ciaran J. McMullan
  • Publication number: 20030066749
    Abstract: A solid state structure having a surface is provided and is exposed to a flux, F, of incident ions.
    Type: Application
    Filed: June 27, 2002
    Publication date: April 10, 2003
    Applicant: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Daniel Branton, Michael J. Aziz, Jiali Li, Derek M. Stein, Ciaran J. McMullan