Patents by Inventor Michael J. Cich
Michael J. Cich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160343908Abstract: A method of fabricating LEDs from a wafer comprising a substrate and epitaxial layers and having a substrate side and a epitaxial side, said method comprising: (a) applying a laser beam across at least one of said substrate side or said epitaxial side of said wafer to define at least one laser-scribed recess having a laser-machined surface; and (b) singulating said wafer along said laser-scribed recess to form singulated LEDs, said singulated LEDs having a top surface, a bottom surface, and a plurality of sidewalls, at least one of said sidewalls comprising at least a first portion comprising at least a portion of said laser-machined surface.Type: ApplicationFiled: August 2, 2016Publication date: November 24, 2016Inventors: RAFAEL ALDAZ, AURELIEN J.F. DAVID, DANIEL F. FEEZELL, THOMAS M. KATONA, RAJAT SHARMA, MICHAEL J. CICH
-
Patent number: 9379280Abstract: A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.Type: GrantFiled: August 17, 2015Date of Patent: June 28, 2016Assignee: SORAA, Inc.Inventors: Michael J. Cich, Kenneth John Thomson
-
Publication number: 20150357513Abstract: A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.Type: ApplicationFiled: August 17, 2015Publication date: December 10, 2015Inventors: MICHAEL J. CICH, KENNETH JOHN THOMSON
-
Patent number: 9112116Abstract: A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.Type: GrantFiled: February 23, 2015Date of Patent: August 18, 2015Assignee: Soraa, Inc.Inventors: Michael J. Cich, Kenneth John Thomson
-
Publication number: 20150171276Abstract: A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.Type: ApplicationFiled: February 23, 2015Publication date: June 18, 2015Inventors: Michael J. Cich, Kenneth Jonh Thomson
-
Publication number: 20150155439Abstract: High-performance light-emitting diode together with apparatus and method embodiments thereto are disclosed. The light emitting diode devices emit at a wavelength of 390 nm to 470 nm or at a wavelength of 405 nm to 430 nm. Light emitting diode devices are characterized by having a geometric relationship (e.g., aspect ratio) between a lateral dimension of the device and a vertical dimension of the device such that the geometric aspect ratio forms a volumetric light emitting diode that delivers a substantially flat current density across the device (e.g., as measured across a lateral dimension of the active region). The light emitting diode devices are characterized by having a current density in the active region of greater than about 175 Amps/cm2.Type: ApplicationFiled: February 5, 2015Publication date: June 4, 2015Inventors: MICHAEL J. CICH, AURELIEN J.F. DAVID, CHRISTOPHE HURNI, RAFAEL ALDAZ, MICHAEL RAGAN KRAMES
-
Patent number: 8994033Abstract: A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.Type: GrantFiled: July 9, 2013Date of Patent: March 31, 2015Assignee: Soraa, Inc.Inventors: Michael J. Cich, Kenneth John Thomson
-
Patent number: 8981312Abstract: Embodiments disclosed herein relate to photon detectors configured to employ the Gunn effect for detecting high-energy photons (e.g., x-rays and gamma rays) and methods of use. In an embodiment, a photon detector for detecting high-energy photons is disclosed. The photon detector includes a p-i-n semiconductor diode having a p-type semiconductor region, an n-type semiconductor region, and a compensated i-region disposed between the p-type semiconductor region and the n-type semiconductor region. The compensated i-region and has a width of about 100 ?m to about 400 ?m and is configured to exhibit the Gunn effect when the p-i-n semiconductor diode is forward biased a sufficient amount. The compensated i-region is doped to include a free carrier concentration of less than about 1010 cm?3.Type: GrantFiled: September 10, 2013Date of Patent: March 17, 2015Assignee: Sandia CorporationInventor: Michael J. Cich
-
Publication number: 20150014695Abstract: A method for fabricating LED devices. The method includes providing a gallium and nitrogen containing substrate member (e.g., GaN) comprising a backside surface and a front side surface. The method includes subjecting the backside surface to a polishing process, causing a backside surface to be characterized by a surface roughness, subjecting the backside surface to an anisotropic etching process exposing various crystal planes to form a plurality of pyramid-like structures distributed spatially in a non-periodic manner on the backside surface, treating the backside surface comprising the plurality of pyramid-like structures, to a plasma species, and subjecting the backside surface to a surface treatment. The method further includes forming a contact material comprising an aluminum bearing species or a titanium bearing species overlying the surface-treated backside to form a plurality of LED devices with the contact material.Type: ApplicationFiled: July 9, 2013Publication date: January 15, 2015Inventors: MICHAEL J. CICH, KENNETH JOHN THOMSON
-
Patent number: 8802471Abstract: Techniques for manufacturing optical devices are disclosed. More particularly, light emitting diodes and in particular to ohmic contacts for light emitting diodes are disclosed.Type: GrantFiled: December 21, 2012Date of Patent: August 12, 2014Assignee: Soraa, Inc.Inventors: Michael J. Cich, Kenneth John Thomson
-
Patent number: 8450773Abstract: A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.Type: GrantFiled: July 15, 2010Date of Patent: May 28, 2013Assignee: Sandia CorporationInventors: Jin K. Kim, Samuel D. Hawkins, John F. Klem, Michael J. Cich
-
Patent number: 8293566Abstract: An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and InxGa1-xSb with 0?x?0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 ?m.Type: GrantFiled: June 15, 2010Date of Patent: October 23, 2012Assignee: Sandia CorporationInventors: Jin K. Kim, Malcolm S. Carroll, Aaron Gin, Phillip F. Marsh, Erik W. Young, Michael J. Cich
-
Patent number: 8274058Abstract: A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.Type: GrantFiled: June 22, 2009Date of Patent: September 25, 2012Assignee: Sandia CorporationInventors: Michael C. Wanke, Mark Lee, Christopher D. Nordquist, Michael J. Cich
-
Patent number: 7755079Abstract: An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and InxGa1?xSb with 0?x?0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 ?m.Type: GrantFiled: August 17, 2007Date of Patent: July 13, 2010Assignee: Sandia CorporationInventors: Jin K. Kim, Malcolm S. Carroll, Aaron Gin, Phillip F. Marsh, Erik W. Young, Michael J. Cich
-
Publication number: 20090045395Abstract: An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and InxGa1?xSb with 0?x?0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 ?m.Type: ApplicationFiled: August 17, 2007Publication date: February 19, 2009Inventors: Jin K. Kim, Malcolm S. Carroll, Aaron Gin, Phillip F. Marsh, Erik W. Young, Michael J. Cich