Patents by Inventor Michael J. Eacobacci, Jr.

Michael J. Eacobacci, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10760562
    Abstract: A cryopump includes a refrigerator with at least first and second stages. A radiation shield surrounds the second stage and is in thermal contact with the first stage. The radiation shield includes a drain hole to permit cryogenic fluid to traverse through the drain hole during regeneration. The cryopump also includes a primary pumping surface supporting adsorbent in thermal contact with the second stage. The second stage array assembly includes a primary condensing surface, protected surfaces having adsorbent, and non-primary condensing surfaces. A baffle is disposed over the drain hole. The baffle redirects gas from an annular space disposed between the radiation shield and the vacuum vessel that attempts to traverse through the drain hole to prevent the gas from condensing on a non-primary condensing surface. The baffle directs gas to condense on the primary condensing surface.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 1, 2020
    Assignee: Edwards Vacuum LLC
    Inventors: Allen J. Bartlett, Michael A. Driscoll, Michael J. Eacobacci, Jr., William L. Johnson, Robert P. Sullivan, Sergei Syssoev, Mark A. Stira, John J. Casello
  • Patent number: 10632399
    Abstract: A refrigerator system or cryopump includes a first refrigerator having at least first and second stages, and a second refrigerator. A thermal coupling between the first stage of the first refrigerator and a cold end of the second refrigerator is restricted to maintain a temperature difference between the cold end of the second refrigerator and the first stage of the first refrigerator. The refrigerator system or cryopump also includes a radiation shield in thermal contact with the cold end of the second refrigerator, and a condensing surface, spaced from and surrounded by the radiation shield, and in thermal contact with a second stage, e.g., coldest stage, of the first refrigerator. The restricted thermal coupling can be configured to balance the cooling load on the two refrigerators.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: April 28, 2020
    Assignee: Edwards Vacuum LLC
    Inventors: Allen J. Bartlett, Michael J. Eacobacci, Jr., Sergei Syssoev
  • Patent number: 9926919
    Abstract: A cryopump has a simple-to-manufacture frontal baffle plate with improved gas distribution and has a large-area second-stage array plate to capture Type II gases. The cryopump has a first-stage frontal baffle plate having orifices and flaps bent from and attached to the orifices. The cryopump has a second-stage top plate that is larger in area than cooling baffles of the second stage array.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 27, 2018
    Assignee: Brooks Automation, Inc.
    Inventors: Sergei Syssoev, Allen J. Bartlett, John J. Casello, Jeffrey A. Wells, Michael J. Eacobacci, Jr.
  • Publication number: 20170306939
    Abstract: A refrigerator system or cryopump includes a first refrigerator having at least first and second stages, and a second refrigerator. A thermal coupling between the first stage of the first refrigerator and a cold end of the second refrigerator is restricted to maintain a temperature difference between the cold end of the second refrigerator and the first stage of the first refrigerator. The refrigerator system or cryopump also includes a radiation shield in thermal contact with the cold end of the second refrigerator, and a condensing surface, spaced from and surrounded by the radiation shield, and in thermal contact with a second stage, e.g., coldest stage, of the first refrigerator. The restricted thermal coupling can be configured to balance the cooling load on the two refrigerators.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 26, 2017
    Inventors: Allen J. Bartlett, Michael J. Eacobacci, JR., Sergei Syssoev
  • Patent number: 9687753
    Abstract: A refrigerator system or cryopump includes a first refrigerator having at least first and second stages, and a second refrigerator. A thermal coupling between the first stage of the first refrigerator and a cold end of the second refrigerator is restricted to maintain a temperature difference between the cold end of the second refrigerator and the first stage of the first refrigerator. The refrigerator system or cryopump also includes a radiation shield in thermal contact with the cold end of the second refrigerator, and a condensing surface, spaced from and surrounded by the radiation shield, and in thermal contact with a second stage, e.g., coldest stage, of the first refrigerator. The restricted thermal coupling can be configured to balance the cooling load on the two refrigerators.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: June 27, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Allen J. Bartlett, Michael J. Eacobacci, Jr., Sergei Syssoev
  • Publication number: 20160146200
    Abstract: A cryopump has a simple-to-manufacture frontal baffle plate with improved gas distribution and has a large-area second-stage array plate to capture Type II gases. The cryopump has a first-stage frontal baffle plate having orifices and flaps bent from and attached to the orifices. The cryopump has a second-stage top plate that is larger in area than cooling baffles of the second stage array.
    Type: Application
    Filed: February 1, 2016
    Publication date: May 26, 2016
    Inventors: Sergei Syssoev, Allen J. Bartlett, John J. Casello, Jeffrey A. Wells, Michael J. Eacobacci, JR.
  • Patent number: 9266038
    Abstract: A cryopump has a simple-to-manufacture frontal baffle plate with improved gas distribution and has a large-area second-stage array plate to capture Type II gases. The cryopump has a first-stage frontal baffle plate having orifices and flaps bent from and attached to the orifices. The cryopump has a second-stage top plate that is larger in area than cooling baffles of the second stage array.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: February 23, 2016
    Assignee: Brooks Automation, Inc.
    Inventors: Sergei Syssoev, Allen J. Bartlett, John J. Casello, Jeffrey A. Wells, Michael J. Eacobacci, Jr.
  • Patent number: 9266039
    Abstract: A cryopump system includes a cryopump having a first cooling stage and a second cooling stage connected to the first cooling stage, the second cooling stage including a gas adsorber having a hydrogen adsorbing capacity of at least about 2 standard liters. The thermal storage capacity of the second cooling stage is sufficient to enable control of hydrogen pressure within the cryopump to satisfy ignition safety limits and limits on hydrogen flow rate in an exhaust line to be within limits of an abatement system to be coupled to the cryopump, upon warming of the second cooling stage during regeneration of up to a fully loaded cryopump.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: February 23, 2016
    Assignee: Brooks Automation, Inc.
    Inventors: Michael J. Eacobacci, Jr., Allen J. Bartlett, John J. Casello, Jeffrey A. Wells
  • Publication number: 20130239593
    Abstract: A cryopump system includes a cryopump having a first cooling stage and a second cooling stage connected to the first cooling stage, the second cooling stage including a gas adsorber having a hydrogen adsorbing capacity of at least about 2 standard liters. The thermal storage capacity of the second cooling stage is sufficient to enable control of hydrogen pressure within the cryopump to satisfy ignition safety limits and limits on hydrogen flow rate in an exhaust line to be within limits of an abatement system to be coupled to the cryopump, upon warming of the second cooling stage during regeneration of up to a fully loaded cryopump.
    Type: Application
    Filed: November 23, 2011
    Publication date: September 19, 2013
    Applicant: BROOKS AUTOMATION, INC.
    Inventors: Michael J. Eacobacci, JR., Allen J. Bartlett, John J. Casello, Jeffrey A. Wells
  • Patent number: 8082741
    Abstract: A cluster tool has a transfer chamber, and a load lock chamber. An adaptor is configured to be coupled between the transfer chamber and the load lock chamber. The adaptor has an adaptor housing with an interior space including an entrance with a first valve and an exit with a second valve. The adaptor housing forms a substrate path through the interior space. The first valve connects the interior space and the load lock chamber. The second valve connects the interior space and the transfer chamber. A cryogenic surface is associated with the adaptor. Other pumps can be associated with the adaptor, such as, for example, a turbo pump, or water vapor pump. The cryogenic surface is configured to selectively evacuate the interior space. A wafer is adapted to be moved through the first valve and through the adaptor housing along the path. The wafer is moved through the exit and into the transfer chamber once the second valve is opened. This adaptor can be applied to the process chamber as well as the load lock.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: December 27, 2011
    Assignee: Brooks Automation, Inc.
    Inventors: Allen J. Bartlett, Joseph A. Kraus, Michael J. Eacobacci, Jr.
  • Publication number: 20080282710
    Abstract: A cluster tool has a transfer chamber, and a load lock chamber. An adaptor is configured to be coupled between the transfer chamber and the load lock chamber. The adaptor has an adaptor housing with an interior space including an entrance with a first valve and an exit with a second valve. The adaptor housing forms a substrate path through the interior space. The first valve connects the interior space and the load lock chamber. The second valve connects the interior space and the transfer chamber. A cryogenic surface is associated with the adaptor. Other pumps can be associated with the adaptor, such as, for example, a turbo pump, or water vapor pump. The cryogenic surface is configured to selectively evacuate the interior space. A wafer is adapted to be moved through the first valve and through the adaptor housing along the path. The wafer is moved through the exit and into the transfer chamber once the second valve is opened. This adaptor can be applied to the process chamber as well as the load lock.
    Type: Application
    Filed: May 15, 2007
    Publication date: November 20, 2008
    Inventors: Allen J. Bartlett, Joseph A. Kraus, Michael J. Eacobacci, JR.
  • Patent number: 6510697
    Abstract: In a power failure recovery, the operating state before a power failure and present conditions of a cryopump are determined to initiate a regeneration or startup process. Where the refrigerator was operating before power failure, it is turned on during recovery to condense gases in the cryopump. A startup process is initiated where the cryopump was in a startup process before the power failure and present conditions of the cryopump indicate that the cryopump is sufficiently empty or clean. If the operating state and present conditions indicate that a corrosive or hazardous liquid remains in the cryopump, a regeneration process is initiated. If the cryopump was in a shutdown process before the power failure, the cryopanel of the cryopump is refrigerated to a temperature at which gases sublimate from the cryopanel. The temperature of the cryopanel is then maintained until the gases are removed.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: January 28, 2003
    Assignee: Helix Technology Corporation
    Inventors: Maureen C. Buonpane, Philip D. Acomb, Brian D. Foley, Michael J. Eacobacci, Jr., Stephen J. Yamartino, Robert M. Patterson
  • Patent number: 5906102
    Abstract: A cryopump having a cryopump chamber includes a purge gas valve coupled to the cryopump chamber for supplying a first quantity of warm gas to the cryopump chamber in order to purge the cryopump chamber during regeneration. A roughing valve couples the cryopump chamber to a roughing pump enabling the cryopump chamber to be roughed. An exhaust valve is coupled to the cryopump chamber for exhausting gases from the cryopump chamber during purge. A delivery valve is coupled to the exhaust valve for delivering a second quantity of warm gas directly onto surfaces of the exhaust valve for warming the surfaces of the exhaust valve.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: May 25, 1999
    Assignee: Helix Technology Corporation
    Inventors: Allen J. Bartlett, Michael J. Eacobacci, Jr., Joseph P. Johnson
  • Patent number: 5819545
    Abstract: The cryopanel of a cryopump can be preferentially defrosted to remove an acid-forming or toxic gas while leaving a second gas substantially condensed upon the cryopanel thereby limiting interaction between the vapor phases of the two gases. The cryopanel is warmed to a temperature within a selective defrost range at which the first gas selectively sublimates from the cryopanel. The temperature of the cryopanel is then maintained at a temperature within this range until the cryopanel is substantially cleared of the first gas leaving the second gas substantially undisturbed as a condensate upon the cryopanel. In a preferred embodiment, the cryopanel is maintained at about 50 to 85K during standard operation before being defrosted.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: October 13, 1998
    Assignee: Helix Technology Corporation
    Inventors: Michael J. Eacobacci, Jr., Stephen R. Matte
  • Patent number: 5775109
    Abstract: A method for regulating the cooldown of multiple cryogenic refrigerators supplied with compressed refrigerant from a common compressor includes the following steps. The cooldown of the refrigerators is monitored. The cooldown of at least one refrigerator is then governed to regulate the gas flow distributed from the compressor to each of the refrigerators to enhance the cooldown of an individual refrigerator. Governing a refrigerator to achieve the objectives of this method can be achieved by various processes. These processes include supplying heat to the refrigerator, slowing the speed of the displacer in the refrigerator, halting the motion of the displacer, and profiling the speed of the displacer as a function of the first and second-stage temperatures.
    Type: Grant
    Filed: January 2, 1997
    Date of Patent: July 7, 1998
    Assignee: Helix Technology Corporation
    Inventors: Michael J. Eacobacci, Jr., Stephen J. Yamartino, Martin L. Stein, Robert E. Khederian