Patents by Inventor Michael J. Eberle

Michael J. Eberle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180228385
    Abstract: An optical connector including a first optical fiber having a first diameter and having a core that includes a thermally expanded core portion adjacent a first end of the first optical fiber, a second optical fiber spliced to a second end of the first optical fiber, the second optical fiber having a second diameter less than the first diameter, and a connector bore having a first bore portion configured to receive the first end of the first optical fiber.
    Type: Application
    Filed: October 7, 2016
    Publication date: August 16, 2018
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke
  • Patent number: 9936881
    Abstract: In an example, an optical system can include a polarization scrambler coupleable to a tunable first optical source configured to generate a coherent optical output. The system can include an intra-body optical sensor such as a an intravascularly-deliverable optical fiber transducer, configured to be coupled to the tunable first optical source through the polarization scrambler, the polarization scrambler configured to vary a polarization state of the optical energy provided by the tunable first optical source, the intravascularly-deliverable optical fiber transducer configured to reflect a portion of the optical energy modulated in response to a vibration, pressure, or strain.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: April 10, 2018
    Assignee: Vascular Imaging Corporation
    Inventors: Howard Neil Rourke, Michael J. Eberle, Shukui Zhao, Diana Margaret Tasker
  • Patent number: 9820632
    Abstract: An elongated optical guidewire assembly, such as for optically imaging a patient from within another catheter, can have a lead portion and a probe portion. A connector between the lead and probe portions can include a bore including first and second bore ends. The first bore end can include a substantially circular cross-sectional profile. The second bore end can include a substantially non-circular cross-sectional profile. The bore can be configured to receive the optical guidewire assembly at the first bore end and configured to deform the optical guidewire assembly at the second bore end such that probe and lead ends of the optical guidewire assembly are deformed into a substantially non-circular profile and located between the first and second bore ends.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: November 21, 2017
    Assignee: Vascular Imaging Corporation
    Inventor: Michael J. Eberle
  • Publication number: 20170079510
    Abstract: An elongated optical guidewire assembly, such as for optically imaging a patient from within another catheter, can have a lead portion and a probe portion. A connector between the lead and probe portions can include a bore including first and second bore ends. The first bore end can include a substantially circular cross-sectional profile. The second bore end can include a substantially non-circular cross-sectional profile. The bore can be configured to receive the optical guidewire assembly at the first bore end and configured to deform the optical guidewire assembly at the second bore end such that probe and lead ends of the optical guidewire assembly are deformed into a substantially non-circular profile and located between the first and second bore ends.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventor: Michael J. Eberle
  • Patent number: 9579026
    Abstract: An imaging guidewire can include one or more optical fibers communicating light along the guidewire. At or near its distal end, one or more blazed or other Fiber Bragg Gratings (FBGs) can direct light to a photoacoustic transducer material that provides ultrasonic imaging energy. Returned ultrasound can be sensed by an FBG sensor. A responsive signal can be optically communicated to the proximal end of the guidewire, and processed such as to develop a 2D or 3D image. In an example, the guidewire outer diameter can be small enough such that an intravascular catheter can be passed over the guidewire. To minimize the size of the guidewire, an ultrasound-to-acoustic transducer that is relatively insensitive to the polarization of the optical sensing signal can be used. The ultrasound-to-optical transducer can be manufactured so that it is relatively insensitive to the polarization of the optical sensing signal.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: February 28, 2017
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke
  • Patent number: 9557490
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: January 31, 2017
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 9533123
    Abstract: An elongated optical guidewire assembly, such as for optically imaging a patient from within another catheter, can have a lead portion and a probe portion. A connector between the lead and probe portions can include a bore including first and second bore ends. The first bore end can include a substantially circular cross-sectional profile. The second bore end can include a substantially non-circular cross-sectional profile. The bore can be configured to receive the optical guidewire assembly at the first bore end and configured to deform the optical guidewire assembly at the second bore end such that probe and lead ends of the optical guidewire assembly are deformed into a substantially non-circular profile and located between the first and second bore ends.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: January 3, 2017
    Assignee: Vascular Imaging Corporation
    Inventor: Michael J. Eberle
  • Publication number: 20160242653
    Abstract: Techniques for imaging are disclosed. In one example, the disclosure is directed to a sensor positioned on an elongate optical fiber. The sensor comprises a plurality of blazed Bragg gratings configured to generate acoustic energy for imaging a region in response to a first optical signal, an interferometer configured to sense acoustic energy from the region and to provide a responsive second optical signal, the interferometer including a first fiber Bragg grating (FBG) and a second FBG, wherein the plurality of blazed Bragg gratings are positioned between the first and second FBGs.
    Type: Application
    Filed: October 1, 2014
    Publication date: August 25, 2016
    Inventors: Howard Neil Rourke, Michael J. Eberle, Diana Margaret Tasker
  • Publication number: 20160175564
    Abstract: This document describes techniques for gripping a guidewire (12). In one example, a device (30) includes an elongated handle (14) defining a handle lumen extending from a distal handle end to a proximal handle end, a handle insert (32,34,36) having a length and being configured to be inserted into the handle lumen, wherein a handle insert material is more compliant than a handle material, and wherein the handle insert defines a guidewire lumen configured to receive a guidewire, and a cap (16) configured to compress the handle insert to grip the guidewire along a substantial portion of the length of the handle insert.
    Type: Application
    Filed: August 5, 2014
    Publication date: June 23, 2016
    Inventor: Michael J. Eberle
  • Publication number: 20160097904
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: November 25, 2015
    Publication date: April 7, 2016
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20160018593
    Abstract: An intravascular or other 2D or 3D imaging apparatus can include a minimally-invasive distal imaging guidewire portion. A plurality of thin optical fibers (804) can be circumferentially distributed about a cylindrical guidewire core (1002), such as in an spiral-wound or otherwise attached optical fiber ribbon (802). A low refractive index coating, high numerical aperture (NA) fiber, or other technique can be used to overcome challenges of using extremely thin optical fibers. Coating and ribbonizing techniques are described. Also described are nonuniform refractive index peak amplitudes or wavelengths techniques for FBG writing, using a depressed index optical cladding, chirping, a self-aligned connector, optical fiber routing and alignment techniques for a system connector, and an adapter for connecting to standard optical fiber coupling connectors.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 21, 2016
    Inventors: Diana Margaret Tasker, Michael J. Eberle, Howard Neil Rourke
  • Patent number: 9198581
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: December 1, 2015
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20150313472
    Abstract: An imaging guidewire can include one or more optical fibers communicating light along the guidewire. At or near its distal end, one or more blazed or other Fiber Bragg Gratings (FBGs) can direct light to a photoacoustic transducer material that provides ultrasonic imaging energy. Returned ultrasound can be sensed by an FBG sensor. A responsive signal can be optically communicated to the proximal end of the guidewire, and processed such as to develop a 2D or 3D image. In an example, the guidewire outer diameter can be small enough such that an intravascular catheter can be passed over the guidewire. To minimize the size of the guidewire, an ultrasound-to-acoustic transducer that is relatively insensitive to the polarization of the optical sensing signal can be used. The ultrasound-to-optical transducer can be manufactured so that it is relatively insensitive to the polarization of the optical sensing signal.
    Type: Application
    Filed: July 10, 2015
    Publication date: November 5, 2015
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke
  • Patent number: 9078561
    Abstract: An imaging guidewire can include one or more optical fibers communicating light along the guidewire. At or near its distal end, one or more blazed or other Fiber Bragg Gratings (FBGs) can direct light to a photoacoustic transducer material that provides ultrasonic imaging energy. Returned ultrasound can be sensed by an FBG sensor. A responsive signal can be optically communicated to the proximal end of the guidewire, and processed such as to develop a 2D or 3D image. In an example, the guidewire outer diameter can be small enough such that an intravascular catheter can be passed over the guidewire. To minimize the size of the guidewire, an ultrasound-to-acoustic transducer that is relatively insensitive to the polarization of the optical sensing signal can be used. The ultrasound-to-optical transducer can be manufactured so that it is relatively insensitive to the polarization of the optical sensing signal.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: July 14, 2015
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke
  • Publication number: 20150141854
    Abstract: The disclosure includes an apparatus including an elongated assembly, at least a portion of which is sized, shaped, or otherwise configured to be inserted into a human body to measure a physiological parameter at an internal location within the body. The elongated assembly includes an elongated member having a first length and an outer surface, a coil disposed about at least a portion of the elongated member, the coil having a second length, and at least one stand-off member positioned between the outer surface of the elongated member and the coil, where the at least one member is configured to prevent the coil from contacting an optical fiber positioned between the elongated member and the coil.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 21, 2015
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke, David J. Spamer
  • Publication number: 20150141843
    Abstract: The disclosure includes an apparatus for insertion into a body lumen. The apparatus can comprise an optical fiber pressure sensor. The optical fiber pressure sensor can comprise an optical fiber configured to transmit an optical sensing signal. A temperature compensated Fiber Bragg Grating (FBG) interferometer can be in optical communication with the optical fiber. The FBG interferometer can be configured to receive a pressure and modulate, in response to the received pressure, the optical sensing signal. A compliant member such as a sensor membrane can be in physical communication with the FBG interferometer. The membrane configured to transmit the received pressure to the FBG interferometer.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 21, 2015
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke, David J. Spamer
  • Publication number: 20150045645
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: September 18, 2014
    Publication date: February 12, 2015
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20140316281
    Abstract: An optical source can generally provide optical energy having phase noise. Such phase noise, when demodulated using an intravascularly-deliverable optical fiber transducer, can be indistinguishable from a signal of interest. Apparatus or techniques can include using one or more of a reference optical cavity or a delay line, such as to obtain information indicative of the phase noise of the optical source. Such information can then be reduced or suppressed from other information obtained from the intravascularly-deliverable optical fiber transducer, such as to improve a signal-to-noise (SNR) ratio of a sensing system including the intravascularly-deliverable optical fiber transducer.
    Type: Application
    Filed: December 12, 2013
    Publication date: October 23, 2014
    Applicant: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Howard Neil Rourke, Diana Margaret Tasker
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20140142414
    Abstract: An imaging guidewire can include one or more optical fibers communicating light along the guidewire. At or near its distal end, one or more blazed or other Fiber Bragg Gratings (FBGs) can direct light to a photoacoustic transducer material that provides ultrasonic imaging energy. Returned ultrasound can be sensed by an FBG sensor. A responsive signal can be optically communicated to the proximal end of the guidewire, and processed such as to develop a 2D or 3D image. In an example, the guidewire outer diameter can be small enough such that an intravascular catheter can be passed over the guidewire. To minimize the size of the guidewire, an ultrasound-to-acoustic transducer that is relatively insensitive to the polarization of the optical sensing signal can be used. The ultrasound-to-optical transducer can be manufactured so that it is relatively insensitive to the polarization of the optical sensing signal.
    Type: Application
    Filed: October 14, 2013
    Publication date: May 22, 2014
    Inventors: Michael J. Eberle, Diana Margaret Tasker, Howard Neil Rourke