Patents by Inventor Michael J. Haji-Sheikh
Michael J. Haji-Sheikh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8129253Abstract: Disclosed are methods for providing wafer parasitic current control to a semiconductor wafer (1500) having a substrate (1520), at least one active layer (1565) and a surface layer (1510), and electrical contacts (1515) formed on said surface layer (1510). Current control can be achieved with the formation of trenches (1525) around electrical contacts, where electrical contacts and associated layers define an electronic device. Insulating implants (1530) can be placed into trenches (1525) and/or sacrificial layers (1540) can be formed between electronic contacts (1515). Trenches control current by promoting current flow within active (e.g., conductive) regions (1560) and impeding current flow through inactive (e.g., nonconductive) regions (1550). Methods of and systems for wafer level burn-in (WLBI) of semiconductor devices are also disclosed. Current control at the wafer level is important when using WLBI methods and systems.Type: GrantFiled: August 12, 2002Date of Patent: March 6, 2012Assignee: Finisar CorporationInventors: Michael J. Haji-Sheikh, James R. Biard, James K. Guenter, Bobby M. Hawkins
-
Patent number: 8039277Abstract: Disclosed are methods for providing wafer parasitic current control to a semiconductor wafer (1240) having a substrate (1240), at least one active layer (1240) and at least one surface layer (1240), Current control can be achieved through the formation of patterns (1240) surrounding contacts (1215), said patterns (1240) including insulating implants and/or sacrificial layers formed between active devices represented by said contacts (1215). Current flows through active regions (1260) associated with said contacts (1215) and active devices. Methods of and systems for wafer level burn-in (WLBI) of semiconductor devices are also disclosed. Current control at the wafer level is important when using WLBI methods and systems.Type: GrantFiled: August 12, 2002Date of Patent: October 18, 2011Assignee: Finisar CorporationInventors: Michael J. Haji-Sheikh, James R. Biard, James K. Guenter, Bobby M. Hawkins
-
Publication number: 20100264511Abstract: Disclosed are methods for providing wafer parasitic current control to a semiconductor wafer (1500) having a sub-state (1520), at least one active layer (1565) and a surface layer (1510), and electrical contacts (1515) formed on said surface layer (1510). Current control can be achieved with the formation of trenches (1525) around electrical contacts, where electrical contacts and associated layers define an electronic device. Insulating implants (1530) can be placed into trenches (1525) and/or sacrificial layers (1540) can be formed between electronic contacts (1515). Trenches control current by promoting current flow within active (e.g., conductive) regions (1560) and impeding current flow through inactive (e.g., nonconductive) regions (1550). Methods of and systems for wafer level burn-in (WLBI) of semiconductor devices are also disclosed. Current control at the wafer level is important when using WLBI methods and systems.Type: ApplicationFiled: August 12, 2002Publication date: October 21, 2010Inventors: Michael J Haji-Sheikh, James R. Biard, James K. Guenter, Bobby M. Hawkins
-
Patent number: 7700379Abstract: Methods of conducting wafer level burn-in (WLBI) of semiconductor devices are presented wherein systems are provided having at least two electrodes (210, 215). Electrical bias (920) and/or thermal power (925) is applied on each side of a wafer (100) having back and front electrical contacts for semiconductor devices borne by the wafer. A pliable conductive layer (910) is described for supplying pins on the device side of a wafer with electrical contact and/or also for providing protection to the wafer from mechanical pressure being applied to its surfaces. Use of a cooling system (950) is also described for enabling the application of a uniform temperature to a wafer undergoing burn-in.Type: GrantFiled: August 12, 2002Date of Patent: April 20, 2010Assignee: Finisar CorporationInventors: Michael J. Haji-Sheikh, James R. Biard, Simon Rabinovich, James K. Guenter, Bobby M. Hawkins
-
Patent number: 7662650Abstract: Disclosed are methods for providing wafer photonic flow control to a semiconductor wafer (1700) having a substrate (1720), at least one active layer (1765) and at least one surface layer (1710). Photonic flow control can be achieved through the formation of trenches (1725) and/or insulating implants (1730) formed in said wafer (1700), whereby active regions (1760) are defined by trenches (1725) that operate as nonconductive areas (1750). Methods of and systems for wafer level burn-in (WLBI) of semiconductor devices are also disclosed. Photonic flow control at the wafer level is important when using WLBI methods and systems.Type: GrantFiled: August 12, 2002Date of Patent: February 16, 2010Assignee: Finisar CorporationInventors: Michael J. Haji-Sheikh, James R. Biard, James K. Guenter, Bobby M. Hawkins
-
Patent number: 7190184Abstract: In one example, a wafer level burn-in system includes a first electrode plate for providing electrical contact simultaneously to contacts of a group of semiconductor devices borne by a semiconductor wafer on a device surface of the semiconductor wafer. A second electrode plate is employed for providing electrical contact to a substrate surface of the semiconductor wafer. Finally, an electrical power generator is employed for providing electrical power to the group of semiconductor devices through the contacts and the substrate of the semiconductor wafer through the first and second electrode plates.Type: GrantFiled: August 12, 2002Date of Patent: March 13, 2007Assignee: Finisar CorporationInventors: Michael J. Haji-Sheikh, James R. Biard, Simon Rabinovich, James K. Guenter, Bobby M. Hawkins
-
Patent number: 6831458Abstract: A method and system for detecting a magnetic field utilizing a magnetoresistor of a magnetic sensor is disclosed. A normalized magnetoresistance associated with the magnetoresistor can be calculated such that the magnetoresistor comprises an initial magnetization direction thereof. The magnetic field is generally permitted to exceed an ability of the magnetoresistor to remain pointed in the initial magnetization direction, thereby enabling the magnetoresistor to experience a magnetization reversal thereof. The normalized resistance can be placed into a new state in response to the magnetization reversal thereof, thereby permitting the normalized resistance to be utilized as a switch thereof and allowing the magnetic sensor to detect changes in the magnetic field associated with the magnetoresistor.Type: GrantFiled: October 21, 2002Date of Patent: December 14, 2004Assignee: Honeywell International Inc.Inventors: Michael J. Haji-Sheikh, Ronald W. Chandler
-
Patent number: 6796193Abstract: A method of forming a composite diaphragm for a pressure transducer is disclosed. The method comprises providing a substrate layer having a first conductivity type and a first surface. Positive implants are deposited in the first surface of the substrate layer, and an epitaxial layer is grown on the first surface of the substrate layer so that the positive implants form positive diffusions in the epitaxial layer. An oxide pattern is formed on the epitaxial layer, and a top layer is deposited over the epitaxial layer and oxide pattern. The substrate layer and positive diffusions of the epitaxial layer are then etched to form the composite diaphragm. The positive diffusions can be patterned so that the resulting etched structure has improved diaphragm performance characteristics. For example, the remaining pattern can include a plurality of bosses and interconnecting battens so that the diaphragm has a relatively high burst pressure and a high output signal with improved linearity at low pressures.Type: GrantFiled: January 17, 2003Date of Patent: September 28, 2004Assignee: Honeywell International Inc.Inventors: Michael J. Haji-Sheikh, Gilberto Morales
-
Patent number: 6784659Abstract: The ring magnet speed and direction sensing scheme according to the present invention addresses many of the shortcomings of the prior art. In accordance with various aspects of the present invention, a pair of bridges placed on the same semiconductor chip are provided for sensing the passing of north/south transition points on a ring magnet. In accordance with an exemplary embodiment, the bridge contains a first group of runners that are perpendicular to a second group of runners. The bridges are placed to cause the signal from one bridge to slightly follow the signal from the other bridge. Placement of the bridges on the same chip enables highly accurate readings.Type: GrantFiled: December 5, 2001Date of Patent: August 31, 2004Assignee: Honeywell International Inc.Inventors: Michael J. Haji-Sheikh, Mark Plagens, Robert Kryzanowski
-
Publication number: 20040075430Abstract: A method and system for detecting a magnetic field utilizing a magnetoresistor of a magnetic sensor is disclosed. A normalized magnetoresistance associated with the magnetoresistor can be calculated such that the magnetoresistor comprises an initial magnetization direction thereof. The magnetic field is generally permitted to exceed an ability of the magnetoresistor to remain pointed in the initial magnetization direction, thereby enabling the magnetoresistor to experience a magnetization reversal thereof. The normalized resistance can be placed into a new state in response to the magnetization reversal thereof, thereby permitting the normalized resistance to be utilized as a switch thereof and allowing the magnetic sensor to detect changes in the magnetic field associated with the magnetoresistor.Type: ApplicationFiled: October 21, 2002Publication date: April 22, 2004Inventors: Michael J. Haji-Sheikh, Ronald W. Chandler
-
Publication number: 20030190765Abstract: A method of forming a composite diaphragm for a pressure transducer is disclosed. The method comprises providing a substrate layer having a first conductivity type and a first surface. Positive implants are deposited in the first surface of the substrate layer, and an epitaxial layer is grown on the first surface of the substrate layer so that the positive implants form positive diffusions in the epitaxial layer. An oxide pattern is formed on the epitaxial layer, and a top layer is deposited over the epitaxial layer and oxide pattern. The substrate layer and positive diffusions of the epitaxial layer are then etched to form the composite diaphragm. The positive diffusions can be patterned so that the resulting etched structure has improved diaphragm performance characteristics. For example, the remaining pattern can include a plurality of bosses and interconnecting battens so that the diaphragm has a relatively high burst pressure and a high output signal with improved linearity at low pressures.Type: ApplicationFiled: January 17, 2003Publication date: October 9, 2003Inventors: Michael J. Haji-Sheikh, Gilberto Morales
-
Patent number: 6626044Abstract: A sensor having freeze resistant features is disclosed. The sensor includes a sensor die and a buffer member that are assembled for attachment to a process fluid conduit. The buffer member defines an opening in fluid communication with the process fluid. The sensor die has a flexible diaphragm, and a capillary channel establishes fluid communication between the diaphragm area of the sensor die and the opening in the buffer member.Type: GrantFiled: October 3, 2000Date of Patent: September 30, 2003Assignee: Honeywell International Inc.Inventors: Michael J. Haji-Sheikh, Richard Alan Davis, Mark Robert Plagens, Carl Edward Stewart, Gilberto Morales
-
Publication number: 20030102860Abstract: The ring magnet speed and direction sensing scheme according to the present invention addresses many of the shortcomings of the prior art. In accordance with various aspects of the present invention, a pair of bridges placed on the same semiconductor chip are provided for sensing the passing of north/south transition points on a ring magnet. In accordance with an exemplary embodiment, the bridge contains a first group of runners that are perpendicular to a second group of runners. The bridges are placed to cause the signal from one bridge to slightly follow the signal from the other bridge. Placement of the bridges on the same chip enables highly accurate readings.Type: ApplicationFiled: December 5, 2001Publication date: June 5, 2003Inventors: Michael J. Haji-Sheikh, Mark Plagens, Robert Kryzanowski
-
Patent number: 6528340Abstract: A method of forming a composite diaphragm for a pressure transducer is disclosed. The method comprises providing a substrate layer having a first conductivity type and a first surface. Positive implants are deposited in the first surface of the substrate layer, and an epitaxial layer is grown on the first surface of the substrate layer so that the positive implants form positive diffusions in the epitaxial layer. An oxide pattern is formed on the epitaxial layer, and a top layer is deposited over the epitaxial layer and oxide pattern. The substrate layer and positive diffusions of the epitaxial layer are then etched to form the composite diaphragm. The positive diffusions can be patterned so that the resulting etched structure has improved diaphragm performance characteristics. For example, the remaining pattern can include a plurality of bosses and interconnecting battens so that the diaphragm has a relatively high burst pressure and a high output signal with improved linearity at low pressures.Type: GrantFiled: January 3, 2001Date of Patent: March 4, 2003Assignee: Honeywell International Inc.Inventors: Michael J. Haji-Sheikh, Gilberto Morales
-
Patent number: 6492697Abstract: A Hall-effect element includes an isolating layer and an active layer of a first electrical conductivity type disposed on the isolating layer, the active layer having a surface. A first set of contacts is disposed in contact with the surface along a first axis, and a second set of contacts is disposed in contact with the surface along a second axis transverse to the first axis. An insulating layer is disposed on the surface. A metal control field plate is disposed on the insulating layer and is coupleable to a voltage source to control the accumulation of charge carriers at the surface of the active layer to vary the resistance of the active layer. Also, a method is provided for reducing null offset in a Hall-effect element.Type: GrantFiled: April 4, 2000Date of Patent: December 10, 2002Assignee: Honeywell International Inc.Inventors: Mark R. Plagens, Michael J. Haji-Sheikh, Walter T. Matzen
-
Publication number: 20020083775Abstract: A method of forming a composite diaphragm for a pressure transducer is disclosed. The method comprises providing a substrate layer having a first conductivity type and a first surface. Positive implants are deposited in the first surface of the substrate layer, and an epitaxial layer is grown on the first surface of the substrate layer so that the positive implants form positive diffusions in the epitaxial layer. An oxide pattern is formed on the epitaxial layer, and a top layer is deposited over the epitaxial layer and oxide pattern. The substrate layer and positive diffusions of the epitaxial layer are then etched to form the composite diaphragm. The positive diffusions can be patterned so that the resulting etched structure has improved diaphragm performance characteristics. For example, the remaining pattern can include a plurality of bosses and interconnecting battens so that the diaphragm has a relatively high burst pressure and a high output signal with improved linearity at low pressures.Type: ApplicationFiled: January 3, 2001Publication date: July 4, 2002Inventors: Michael J. Haji-Sheikh, Gilberto Morales
-
Patent number: 6322247Abstract: A microsensor housing having a structure with at least one inlet at one end and a thermal property sensor at the other end. Situated between the inlet and the sensor is a convection shield. Sampled fluid is taken in the inlet from a channel carrying the fluid to be sampled. The convection flow lines of the fluid are barred by the convection shield. The fluid is diffused into a cavity between the shield and sensor. The sensor detects a thermal property of the diffused fluid. One preferred shield has holes about its perimeter with a solid center part of the shield covering at a distance the sensor. The channel carrying the fluid may have screens to reduce turbulence noise and to aid in fluid transport to and from the sensor housing.Type: GrantFiled: August 5, 1999Date of Patent: November 27, 2001Assignee: Honeywell International Inc.Inventors: Ulrich Bonne, Michael J. Haji-Sheikh, Robert E. Higashi, Aravind Padmanabhan
-
Patent number: 5667879Abstract: A stack of two refractory nitride layers and a magnetoresistive layer are used to facilitate electrical connection between components of a sensor. The stack of tantalum nitride and nickel iron layers are disposed over a silicide layer that is, in turn, disposed on a diffusion of conductive material within the body of a silicon layer. A titanium tungsten layer is disposed on the stack and below a subsequent layer of a conductive metal such as aluminum. A silicon nitride passivation layer is disposed over all of the other layers.Type: GrantFiled: September 13, 1995Date of Patent: September 16, 1997Assignee: Honeywell Inc.Inventor: Michael J. Haji-Sheikh