Patents by Inventor Michael J. Heller

Michael J. Heller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11506662
    Abstract: Provided are methods of identifying, visualizing and purifying proteases from a complex biological sample.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: November 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Michael J. Heller, Augusta E. Modestino, Geert W. Schmid Schonbein, Elaine Skowronski, Christian Leiterer
  • Publication number: 20220274111
    Abstract: Disclosed are miniaturized electronic systems, devices and methods for biomarker analysis, which can be incorporated into blood collection tubes and other containers that enable the immediate isolation, concentration, analysis and storage of disease related biomarkers upon blood draw. In some aspects, a miniaturized electronic system includes a high-surface area folded or sandwiched electrokinetic microelectrode array chip device that allows both AC dielectrophoretic (DEP) and DC electrophoretic based separation and isolation and other processes to be used for the concentration and biomarkers.
    Type: Application
    Filed: August 21, 2020
    Publication date: September 1, 2022
    Inventors: Michael J. Heller, Daniel Heineck, Stuart D. Ibsen, Sadik Esener, Jean M. Lewis
  • Patent number: 10754250
    Abstract: This disclosure relates to DNA double-write/double binding identity, and the design and use of DNA double-write materials and methods in processes and systems for macro, micro, and nano-photolithography and self-assembly processes for carrying out two and three dimensional nanofabrication.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: August 25, 2020
    Assignee: The Regents of the University of California
    Inventors: Michael J. Heller, Elaine Skowronski, Youngjun Song, John Warner, Shaochen Chen
  • Publication number: 20200057065
    Abstract: Provided are methods of identifying, visualizing and purifying proteases from a complex biological sample.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 20, 2020
    Inventors: Michael J. Heller, Augusta E. Modestino, Geert W. Schmid Schonbein, Elaine Skowronski, Christian Leiterer
  • Patent number: 9976133
    Abstract: Novel synthetic catalytic structures or “synzymes,” e.g., synthetic polypeptides, with catalytic properties are provided. It is believed that these synthetic catalytic structures mimic some of the precise conformational changes necessary for catalytic activities seen in enzymes. The catalytic properties of these synthetic catalytic structures or synzymes can be further improved by the application of controlled external forces, e.g., electric fields.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: May 22, 2018
    Assignee: The Regents of the University of California
    Inventors: Michael J. Heller, Tsukasa Takahashi, Michelle Lillian Cheung
  • Publication number: 20170022487
    Abstract: Novel synthetic catalytic structures or “synzymes,” e.g., fatty acid modified polypeptides, with catalytic properties are provided. It is believed that these synthetic catalytic structures mimic some of the precise conformational changes necessary for catalytic activities seen in enzymes. The catalytic properties of these synthetic catalytic structures or synzymes can be further improved by the application of controlled external forces, e.g., electric fields, or fluidized bed.
    Type: Application
    Filed: April 1, 2015
    Publication date: January 26, 2017
    Inventors: Michael J. Heller, Tsukasa Takahashi, Edward Lewis Sheldon, III
  • Patent number: 9399826
    Abstract: A thin film deposition apparatus and a thin film deposition method using an electric field are provided. The thin film deposition apparatus includes: a first substrate; a plurality of electrodes in a 2D arrangement on the first substrate; and a solution provided on the plurality of electrodes and in which charged nanoparticles are distributed, wherein the charged nanoparticles are selectively deposited on at least a part of the plurality of electrodes by independently applying a voltage to each of the plurality of electrodes.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: July 26, 2016
    Assignees: SAMSUNG ELECTRONICS CO., LTD., The Regents of The University of California
    Inventors: Jin S. Heo, Hwi-yeol Park, Kyung-hoon Cho, Kyoung-hwan Choi, Se-jung Kim, Michael J. Heller, Young-jun Song
  • Publication number: 20160179008
    Abstract: This disclosure relates to DNA double-write/double binding identity, and the design and use of DNA double-write materials and methods in processes and systems for macro, micro, and nano-photolithography and self-assembly processes for carrying out two and three dimensional nanofabrication.
    Type: Application
    Filed: July 31, 2014
    Publication date: June 23, 2016
    Inventors: Michael J. Heller, Elaine Skowronski, Youngjun Song, John Warner, Shaochen Chen
  • Publication number: 20150329984
    Abstract: A thin film deposition apparatus and a thin film deposition method using an electric field are provided. The thin film deposition apparatus includes: a first substrate; a plurality of electrodes in a 2D arrangement on the first substrate; and a solution provided on the plurality of electrodes and in which charged nanoparticles are distributed, wherein the charged nanoparticles are selectively deposited on at least a part of the plurality of electrodes by independently applying a voltage to each of the plurality of electrodes.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicants: The Regents of the University of California, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin S. HEO, Hwi-yeol PARK, Kyung-hoon CHO, Kyoung-hwan CHOI, Se-jung KIM, Michael J. Heller, Young-jun SONG
  • Publication number: 20150175993
    Abstract: Novel synthetic catalytic structures or “synzymes,” e.g., synthetic polypeptides, with catalytic properties are provided. It is believed that these synthetic catalytic structures mimic some of the precise conformational changes necessary for catalytic activities seen in enzymes. The catalytic properties of these synthetic catalytic structures or synzymes can be further improved by the application of controlled external forces, e.g., electric fields.
    Type: Application
    Filed: June 20, 2013
    Publication date: June 25, 2015
    Inventors: Michael J. Heller, Tsukasa Takahashi, Michelle Lillian Cheung
  • Patent number: 8630807
    Abstract: Methods are provided for the fabrication of microscale, including micron and sub-micron scale, including nanoscale, devices. Electronic transport of movable component devices is utilized through a fluidic medium to effect transport to a desired target location on a substrate or motherboard. Forces include electrophoretic force, electroosmotic force, electrostatic force and/or dielectrophoretic force. In the preferred embodiment, free field electroosmotic forces are utilized either alone, or in conjunction with, other forces. These forces may be used singly or in combination, as well as in conjunction with yet other forces, such as fluidic forces, mechanical forces or thermal convective forces. Transport may be effected through the use of driving electrodes so as to transport the component device to yet other connection electrodes. In certain embodiments, the component devices may be attached to the target device using a solder reflow step.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: January 14, 2014
    Assignee: Gamida For Life B.V.
    Inventors: Carl F. Edman, Michael J. Heller, Rachel Formosa, Christian Gurtner
  • Patent number: 8389212
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: March 5, 2013
    Assignee: Gamida for Life, B.V.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 8313940
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 20, 2012
    Assignee: Gamida For Life B.V.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 8114589
    Abstract: A method for electronically stabilizing hybridization of nucleic acids bound at a test site of a microelectronic device is described. First and second negatively charged nucleic acids are provided, the second nucleic acid being bound to the test site. A zwitterionic buffer having a conductance of less than 100 mS/cm is applied to the microelectronic device. A current is applied to the test site to positively bias the test site, such that the first negatively charged nucleic acid is transported to the positively biased test site having the bound the second negatively charged nucleic acid. At the test site, the first and second negatively charged nucleic acids hybridize. The zwitterionic buffer acquires a net positive charge under influence of the current, such that the positively charged zwitterionic buffer stabilizes the hybridization by reducing the repulsion between the first and second negatively charged nucleic acids.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: February 14, 2012
    Assignee: Gamida For Life B.V.
    Inventors: Ronald G. Sosnowski, William F. Butler, Eugene Tu, Michael I. Nerenberg, Michael J. Heller, Carl F. Edman
  • Patent number: 7947486
    Abstract: A method for analyzing nucleic acid obtained from a cell sample on a platform is described. A platform having a cell selector, a nucleic acid selector, and an array of microlocations, wherein at least one microlocation has an associated capture sequence, is provided. The cell selector is contacted with a cell sample, wherein a portion of the cells remain associated with the cell selector. At least a portion of cells associated with the cell selector are lysed to release a nucleic acid sample. The nucleic acid selector is then contacted with the nucleic acid sample, such that a portion of the nucleic acid sample remains associated with the nucleic acid selector. The associated nucleic acid sample is then released from the nucleic acid selector and then is contacted with the array of microlocations, such that at least a portion of the released nucleic acid sample hybridizes with the capture sequence.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: May 24, 2011
    Assignee: Gamida for Life B.V.
    Inventors: Michael J. Heller, Eugene Tu, Glen A. Evans, Ronald G. Sosnowski
  • Patent number: 7857957
    Abstract: We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: December 28, 2010
    Assignee: Gamida for Life B.V.
    Inventors: Jing Cheng, Lei Wu, Michael J. Heller, Edward L. Sheldon, Jonathan M. Diver, James P. O'Connell, Dan Smolko, Shila Jalali, David Willoughby
  • Publication number: 20100173792
    Abstract: A method for analyzing nucleic acid obtained from a cell sample on a platform is described. A platform having a cell selector, a nucleic acid selector, and an array of microlocations, wherein at least one microlocation has an associated capture sequence, is provided. The cell selector is contacted with a cell sample, wherein a portion of the cells remain associated with the cell selector. At least a portion of cells associated with the cell selector are lysed to release a nucleic acid sample. The nucleic acid selector is then contacted with the nucleic acid sample, such that a portion of the nucleic acid sample remains associated with the nucleic acid selector. The associated nucleic acid sample is then released from the nucleic acid selector and then is contacted with the array of microlocations, such that at least a portion of the released nucleic acid sample hybridizes with the capture sequence.
    Type: Application
    Filed: February 5, 2007
    Publication date: July 8, 2010
    Inventors: Michael J. Heller, Eugene Tu, Glen A. Evans, Ronald G. Sosnowski
  • Publication number: 20080203502
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Application
    Filed: December 21, 2007
    Publication date: August 28, 2008
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 7314708
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: January 1, 2008
    Assignee: Nanogen, Inc.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 7300757
    Abstract: This invention pertains to the design, fabrication, and uses of an electronic system which can actively carry out and control multi-step and multiplex reactions in macroscopic or microscopic formats. In particular, these reactions include molecular biological reactions, such as nucleic acid hybridizations, nucleic acid amplification, sample preparation, antibody/antigen reactions, clinical diagnostics, combinatorial chemistry and selection, drug screening, oligonucleotide and nucleic acid synthesis, peptide synthesis, biopolymer synthesis, and catalytic reactions. A key feature of the present invention is the ability to control the localized concentration of two or more reaction-dependant molecules and their reaction environment in order to greatly enhance the rate and specificity of the molecular biological reaction.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: November 27, 2007
    Assignee: Nanogen, Inc.
    Inventors: Carl F. Edman, Eugene Tu, Christian Gurtner, Lorelei Westin, Michael J. Heller