Patents by Inventor Michael J. Hobday

Michael J. Hobday has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9050129
    Abstract: A positioning device for providing access to a ventricle of a heart. In one embodiment, the device includes a cup positionable over an apex of the heart and at least a first access valve in the cup for accessing an entry point to the ventricle of the heart.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 9, 2015
    Assignee: Medtronic, Inc.
    Inventors: Paul T. Rothstein, Alexander J. Hill, Michael J. Hobday, Michael M. Green, Paul A. Iaizzo
  • Patent number: 8926635
    Abstract: A novel occluder application and clip device for treatment of embolic stroke caused by atrial fibrillation uses multiple sutures in a non directional handle to affix the occlusion device to the applicator and manipulate the occluder from an open and receiving position to a closed and occluding position. The occluder is retained in place by a clamping means related to locks retainers, resilient material or otherwise. An actuator mechanism is used to manipulate the occluder to a locked or occluding position. The applicator with the occluder attached has a low profile and remote manipulations to allow the occluder to be delivered to the clamping location within a patient through a small incision or delivery port such as a trocar cannula or the like.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: January 6, 2015
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: 8734320
    Abstract: Suction-assisted tissue-engaging devices, systems, and methods are disclosed that can be employed through minimal surgical incisions to engage tissue during a medical procedure through application of suction to the tissue through a suction member applied to the tissue. A shaft is introduced into a body cavity through a first incision, and a suction head is attached to the shaft via a second incision. The suction head is applied against the tissue by manipulation of the shaft and suction is applied to engage the tissue while the medical procedure is performed through the second incision. A system coupled to the shaft and a fixed reference point stabilizes the shaft and suction head. When the medical procedure is completed, suction is discontinued, the suction head is detached from the shaft and withdrawn from the body cavity through the second incision, and the shaft is retracted through the first incision.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: May 27, 2014
    Assignee: Medtronic, Inc.
    Inventors: Philip J. Haarstad, Christopher P. Olig, Paul T. Rothstein, Michael J. Hobday, William A. Steinberg, David J. S. Kim, Thomas P. Daigle, Ann M. Thomas, Brian J. Ross, Steven C. Christian, Robert H. Reetz, Douglas H. Gubbin
  • Patent number: 8663245
    Abstract: The invention provides a system for occluding a left atrial appendage of a patient. The system can include a ring occluder that can be positioned around the left atrial appendage and a ring applicator to position the ring occluder with respect to the left atrial appendage. The system can also provide a tissue-grasping tool that is separable from the ring applicator tool.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Patent number: 8545754
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Medtronic, Inc.
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Publication number: 20130184727
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 18, 2013
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Patent number: 8480696
    Abstract: The invention provides a system and method for harvesting a vessel section. The system comprises a vessel support member, a handle, and a tubular cutting device. The vessel support member is introduced into the vessel section to be harvested. The tubular cutting device may comprise an outer tubular member or an outer and an inner tubular member. The outer tubular member carries at least one cutting element. The tubular member or members are advanced over the vessel section and vessel support member to core out the vessel section and tissue adjoining the vessel section.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: July 9, 2013
    Assignee: Medtronic, Inc.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Ana R. Buhr, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns
  • Patent number: 8449449
    Abstract: Suction-assisted tissue-engaging devices, systems, and methods are disclosed that can be employed through minimal surgical incisions to engage tissue during a medical procedure through application of suction to the tissue through a suction member applied to the tissue. A shaft is introduced into a body cavity through a first incision, and a suction head is attached to the shaft via a second incision. The suction head is applied against the tissue by manipulation of the shaft and suction is applied to engage the tissue while the medical procedure is performed through the second incision. A system coupled to the shaft and a fixed reference point stabilizes the shaft and suction head. When the medical procedure is completed, suction is discontinued, the suction head is detached from the shaft and withdrawn from the body cavity through the second incision, and the shaft is retracted through the first incision.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: May 28, 2013
    Assignee: Medtronic, Inc.
    Inventors: Philip J. Haarstad, Christopher P. Olig, Paul T. Rothstein, Michael J. Hobday, William A. Steinberg, David J. S. Kim, Thomas P. Daigle, Ann M. Thomas, Brian J. Ross, Steven C. Christian, Robert H. Reetz, Douglas H. Gubbin
  • Patent number: 8025620
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: September 27, 2011
    Assignee: Medtronic, Inc.
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20110152904
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: October 16, 2007
    Publication date: June 23, 2011
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Rebecca Buhr, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20100305398
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Application
    Filed: August 3, 2010
    Publication date: December 2, 2010
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20100269342
    Abstract: Described is a method of making an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit, the steps comprising: providing a core through which blood can be supplied to the apparatus from a patient; providing a heat exchanger about the core such that blood from the core can move radially outward through the heat exchanger; providing an oxygenator about the heat exchanger such that blood from the heat exchanger can move radially outward through the oxygenator; and placing the core, heat exchanger and oxygenator in a housing that includes an inlet in communication with the core and an outlet that is located radially outward from the inlet in order to define a flowpath for blood through the apparatus.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li
  • Publication number: 20100272606
    Abstract: Described is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit comprising: an inlet mandrel that is configured such that the blood moves radially outward from the inlet mandrel through the openings in a radial direction; a heat exchanger arranged around the inlet mandrel, wherein blood can move radially outward with the transfer of heat to or from the blood; an oxygenator arranged around the heat exchanger, wherein blood can move from the heat exchanger radially outward with the transfer of oxygen into the blood; and a housing that houses the inlet mandrel, the heat exchanger and the oxygenator, and that comprises a blood inlet in communication with the inlet mandrel in order to allow blood to enter the apparatus from the patient, and a blood outlet in communication with the oxygenator in order for blood to exit the apparatus, wherein the blood outlet is located in the housing radially outward from the inlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Partick J. Cloutier, Anil Thapa, Ming Li, Kevin McInotosh
  • Publication number: 20100272607
    Abstract: Described is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit, the apparatus having an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus, the apparatus comprising: a core in communication with the inlet such that blood from a patient can be supplied to the core, the core comprising a first element and a second element that interfit to define openings, wherein the elements and the openings together enhance flow of blood from the patient radially outward from the core; a heat exchanger that is arranged about the core and through which blood from the core can move radially outward; and an oxygenator that is arranged about the heat exchanger and through which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Publication number: 20100274091
    Abstract: A positioning device for providing access to a ventricle of a heart. In one embodiment, the device includes a cup positionable over an apex of the heart and at least a first access valve in the cup for accessing an entry point to the ventricle of the heart.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 28, 2010
    Applicant: Medtronic, Inc
    Inventors: Paul T. Rothstein, Alexander J. Hill, Michael J. Hobday, Michael M. Green, Paul A. Iaizzo
  • Publication number: 20100274170
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Patent number: 7794387
    Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: September 14, 2010
    Assignee: Medtronic, Inc.
    Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig
  • Publication number: 20100145361
    Abstract: A novel occluder application and clip device for treatment of embolic stroke caused by atrial fibrillation uses multiple sutures in a non directional handle to affix the occlusion device to the applicator and manipulate the occluder from an open and receiving position to a closed and occluding position. The occluder is retained in place by a clamping means related to locks retainers, resilient material or otherwise. An actuator mechanism is used to manipulate the occluder to a locked or occluding position. The applicator with the occluder attached has a low profile and remote manipulations to allow the occluder to be delivered to the clamping location within a patient through a small incision or delivery port such as a trocar cannula or the like.
    Type: Application
    Filed: October 2, 2009
    Publication date: June 10, 2010
    Inventors: David E. Francischelli, Roderick E. Briscoe, Leonard H. Leuer, Daniel C. Haeg, Tom P. Daigle, David Kim, Mark T. Stewart, Andrew L. Olson, Patrick J. Cloutier, Christopher W. Smith, Michael J. Hobday, Tessy Kanayinkal, Douglas H. Gubbin, Paul T. Rothstein, Joseph E. Cardinal, Jessica L. Foley, Christopher J. Plott
  • Publication number: 20100121362
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20100114136
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 6, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad