Patents by Inventor Michael J. Joslyn

Michael J. Joslyn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7223154
    Abstract: Methods and apparatuses for planarizing a microelectronic substrate. In one aspect of the invention, a first portion of an energy-sensitive, non-sacrificial planarizing pad material is exposed to a selected energy without exposing a second portion of the material to the selected energy source. The planarizing pad material is exposed to a solvent to remove material from one of the first or second portions of the planarizing pad material at a faster rate than removing material from the other of the first and second portions. The process forms a plurality of recesses directly in the surface of the planarizing pad which are configured to support a planarizing liquid proximate to the surface of the planarizing pad material during planarization of the microelectronic substrate. Alternatively, the process can form a mold having protrusions that are pressed into the planarizing pad to define the recesses in the pad.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 29, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Stephen J. Kramer, Michael J. Joslyn
  • Patent number: 7210989
    Abstract: Machines with solution dispensers and methods of using such machines for chemical-mechanical planarization and/or electrochemical-mechanical planarization/deposition of microelectronic workpieces. One embodiment of such a machine includes a table having a support surface, a processing pad on the support surface, and a carrier assembly having a head configured to hold a microelectronic workpiece. The carrier assembly can further include a drive assembly that manipulates the head. The machine can also include a solution dispenser separate from the head. The solution dispenser can include a support extending over the pad and a fluid discharge unit or distributor carried by the support. The fluid discharge unit is configured to discharge a planarizing solution onto a plurality of separate locations across the pad.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: May 1, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Michael J. Joslyn
  • Patent number: 7192336
    Abstract: Methods and apparatuses for planarizing a microelectronic substrate. In one aspect of the invention, a first portion of an energy-sensitive, non-sacrificial planarizing pad material is exposed to a selected energy without exposing a second portion of the material to the selected energy source. The planarizing pad material is exposed to a solvent to remove material from one of the first or second portions of the planarizing pad material at a faster rate than removing material from the other of the first and second portions. The process forms a plurality of recesses directly in the surface of the planarizing pad which are configured to support a planarizing liquid proximate to the surface of the planarizing pad material during planarization of the microelectronic substrate. Alternatively, the process can form a mold having protrusions that are pressed into the planarizing pad to define the recesses in the pad.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: March 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Stephen J. Kramer, Michael J. Joslyn
  • Patent number: 6837942
    Abstract: A chemical collection assembly and a method for using the assembly such that a chemical-mechanical polishing (CMP) pad used in the manufacture of semiconductor wafers can be assessed for cleanliness. The method involves delivering solvent from the assembly's reservoir to an enclosed volume over the CMP pad. The solvent then brings contaminants imbedded on the CMP pad into solution. This solution is then drawn back up from the enclosed volume wherefrom a sample of the solution can be taken. That sample is then analyzed for the level of contaminants present therein, and the analysis is compared to a pre-determined level of cleanliness to determine whether the CMP pad should or should not continue to be used for semiconductor wafer manufacturing.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: January 4, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Michael J. Joslyn
  • Publication number: 20040209549
    Abstract: Machines with solution dispensers and methods of using such machines for chemical-mechanical planarization and/or electrochemical-mechanical planarization/deposition of microelectronic workpieces. One embodiment of such a machine includes a table having a support surface, a processing pad on the support surface, and a carrier assembly having a head configured to hold a microelectronic workpiece. The carrier assembly can further include a drive assembly that manipulates the head. The machine can also include a solution dispenser separate from the head. The solution dispenser can include a support extending over the pad and a fluid discharge unit or distributor carried by the support. The fluid discharge unit is configured to discharge a planarizing solution onto a plurality of separate locations across the pad.
    Type: Application
    Filed: April 20, 2004
    Publication date: October 21, 2004
    Inventor: Michael J. Joslyn
  • Publication number: 20040209548
    Abstract: Machines with solution dispensers and methods of using such machines for chemical-mechanical planarization and/or electrochemical—mechanical planarization/deposition of microelectronic workpieces. One embodiment of such a machine includes a table having a support surface, a processing pad on the support surface, and a carrier assembly having a head configured to hold a microelectronic workpiece. The carrier assembly can further include a drive assembly that manipulates the head. The machine can also include a solution dispenser separate from the head. The solution dispenser can include a support extending over the pad and a fluid discharge unit or distributor carried by the support. The fluid discharge unit is configured to discharge a planarizing solution onto a plurality of separate locations across the pad.
    Type: Application
    Filed: April 20, 2004
    Publication date: October 21, 2004
    Inventor: Michael J. Joslyn
  • Publication number: 20040198184
    Abstract: Machines with solution dispensers and methods of using such machines for chemical-mechanical planarization and/or electrochemical-mechanical planarization/deposition of microelectronic workpieces. One embodiment of such a machine includes a table having a support surface, a processing pad on the support surface, and a carrier assembly having a head configured to hold a microelectronic workpiece. The carrier assembly can further include a drive assembly that manipulates the head. The machine can also include a solution dispenser separate from the head. The solution dispenser can include a support extending over the pad and a fluid discharge unit or distributor carried by the support. The fluid discharge unit is configured to discharge a planarizing solution onto a plurality of separate locations across the pad.
    Type: Application
    Filed: April 20, 2004
    Publication date: October 7, 2004
    Inventor: Michael J. Joslyn
  • Publication number: 20040087250
    Abstract: Methods and apparatuses for planarizing a microelectronic substrate. In one aspect of the invention, a first portion of an energy-sensitive, non-sacrificial planarizing pad material is exposed to a selected energy without exposing a second portion of the material to the selected energy source. The planarizing pad material is exposed to a solvent to remove material from one of the first or second portions of the planarizing pad material at a faster rate than removing material from the other of the first and second portions. The process forms a plurality of recesses directly in the surface of the planarizing pad which are configured to support a planarizing liquid proximate to the surface of the planarizing pad material during planarization of the microelectronic substrate. Alternatively, the process can form a mold having protrusions that are pressed into the planarizing pad to define the recesses in the pad.
    Type: Application
    Filed: July 15, 2003
    Publication date: May 6, 2004
    Inventors: Stephen J. Kramer, Michael J. Joslyn
  • Patent number: 6722943
    Abstract: Machines with solution dispensers and methods of using such machines for chemical-mechanical planarization and/or electrochemical-mechanical planarization/deposition of microelectronic workpieces. One embodiment of such a machine includes a table having a support surface, a processing pad on the support surface, and a carrier assembly having a head configured to hold a microelectronic workpiece. The carrier assembly can further include a drive assembly that manipulates the head. The machine can also include a solution dispenser separate from the head. The solution dispenser can include a support extending over the pad and a fluid discharge unit or distributor carried by the support. The fluid discharge unit is configured to discharge a planarizing solution onto a plurality of separate locations across the pad.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: April 20, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Michael J. Joslyn
  • Publication number: 20040033620
    Abstract: A chemical collection assembly and a method for using the assembly such that a chemical-mechanical polishing (CMP) pad used in the manufacture of semiconductor wafers can be assessed for cleanliness. The method involves delivering solvent from the assembly's reservoir to an enclosed volume over the CMP pad. The solvent then brings contaminants imbedded on the CMP pad into solution. This solution is then drawn back up from the enclosed volume wherefrom a sample of the solution can be taken. That sample is then analyzed for the level of contaminants present therein, and the analysis is compared to a pre-determined level of cleanliness to determine whether the CMP pad should or should not continue to be used for semiconductor wafer manufacturing.
    Type: Application
    Filed: August 12, 2003
    Publication date: February 19, 2004
    Inventor: Michael J. Joslyn
  • Patent number: 6605159
    Abstract: A chemical collection assembly and a method for using the assembly such that a chemical-mechanical polishing (CMP) pad used in the manufacture of semiconductor wafers can be assessed for cleanliness. The method involves delivering solvent from the assembly's reservoir to an enclosed volume over the CMP pad. The solvent then brings contaminants imbedded on the CMP pad into solution. This solution is then drawn back up from the enclosed volume wherefrom a sample of the solution can be taken. That sample is then analyzed for the level of contaminants present therein, and the analysis is compared to a pre-determined level of cleanliness to determine whether the CMP pad should or should not continue to be used for semiconductor wafer manufacturing.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 12, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Michael J. Joslyn
  • Publication number: 20030143927
    Abstract: Machines with solution dispensers and methods of using such machines for chemical-mechanical planarization and/or electrochemical—mechanical planarization/deposition of microelectronic workpieces. One embodiment of such a machine includes a table having a support surface, a processing pad on the support surface, and a carrier assembly having a head configured to hold a microelectronic workpiece. The carrier assembly can further include a drive assembly that manipulates the head. The machine can also include a solution dispenser separate from the head. The solution dispenser can include a support extending over the pad and a fluid discharge unit or distributor carried by the support. The fluid discharge unit is configured to discharge a planarizing solution onto a plurality of separate locations across the pad.
    Type: Application
    Filed: August 24, 2001
    Publication date: July 31, 2003
    Inventor: Michael J. Joslyn
  • Patent number: 6595832
    Abstract: In one implementation, a chemical mechanical polishing method includes providing a workpiece having a dielectric region to be polished. A first chemical mechanical polishing of the dielectric region is conducted on the workpiece using a polishing pad and a first slurry. Then, a second chemical mechanical polishing is conducted of the dielectric region on the workpiece using the polishing pad and a second slurry different from the first slurry. In one implementation, a chemical mechanical polishing method includes providing a workpiece having a dielectric region to be polished. The dielectric region has a thickness ultimately desired to removed by polishing prior to moving the workpiece on to a subsequent nonpolishing processing step. A first chemical mechanical polishing of the dielectric region is conducted on the workpiece using a first slurry. Then, a second chemical mechanical polishing of the dielectric region is conducted on the workpiece using a second slurry different from the first slurry.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: July 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Michael J. Joslyn, Sidney B. Rigg
  • Patent number: 6592443
    Abstract: Methods and apparatuses for planarizing a microelectronic substrate. In one aspect of the invention, a first portion of an energy-sensitive, non-sacrificial planarizing pad material is exposed to a selected energy without exposing a second portion of the material to the selected energy source. The planarizing pad material is exposed to a solvent to remove material from one of the first or second portions of the planarizing pad material at a faster rate than removing material from the other of the first and second portions. The process forms a plurality of recesses directly in the surface of the planarizing pad which are configured to support a planarizing liquid proximate to the surface of the planarizing pad material during planarization of the microelectronic substrate. Alternatively, the process can form a mold having protrusions that are pressed into the planarizing pad to define the recesses in the pad.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: July 15, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Stephen J. Kramer, Michael J. Joslyn
  • Patent number: 6533893
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the method can include planarizing the microelectronic substrate with a fixed abrasive polishing pad while maintaining the pH of a planarizing liquid adjacent the polishing pad at an approximately constant level by buffering the planarizing liquid. The planarizing liquid can include ammonium hydroxide and ammonium acetate, ammonium citrate, or potassium hydrogen phthalate. In another embodiment, the planarizing liquid can have an initially high pH that has a reduced tendency to decrease during planarization.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: March 18, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Gundu M. Sabde, James J. Hofmann, Michael J. Joslyn, Whonchee Lee
  • Publication number: 20030041882
    Abstract: A chemical collection assembly and a method for using the assembly such that a chemical-mechanical polishing (CMP) pad used in the manufacture of semiconductor wafers can be assessed for cleanliness. The method involves delivering solvent from the assembly's reservoir to an enclosed volume over the CMP pad. The solvent then brings contaminants imbedded on the CMP pad into solution. This solution is then drawn back up from the enclosed volume wherefrom a sample of the solution can be taken. That sample is then analyzed for the level of contaminants present therein, and the analysis is compared to a pre-determined level of cleanliness to determine whether the CMP pad should or should not continue to be used for semiconductor wafer manufacturing.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 6, 2003
    Inventor: Michael J. Joslyn
  • Patent number: 6475071
    Abstract: The present invention is directed toward an apparatus and method for the cross flow filtration of polishing slurry compositions used in semiconductor wafer planarization. In one aspect, an apparatus according to the invention includes an elongated cylindrical filter element adapted to be rotated at predetermined angular velocities that is disposed within a cylindrical housing. The housing has an inlet that is fluidly connected to a source of polishing slurry through a pump, an outlet to provide filtered slurry to a planarization machine, and a bypass outlet that is fluidly connected to the source of polishing slurry to allow refiltration of the bypass fluid. A motor is also included to impart rotational motion to the cylindrical filter element.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: November 5, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Michael J. Joslyn
  • Publication number: 20020098696
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the method can include planarizing the microelectronic substrate with a fixed abrasive polishing pad while maintaining the pH of a planarizing liquid adjacent the polishing pad at an approximately constant level by buffering the planarizing liquid. The planarizing liquid can include ammonium hydroxide and ammonium acetate, ammonium citrate, or potassium hydrogen phthalate. In another embodiment, the planarizing liquid can have an initially high pH that has a reduced tendency to decrease during planarization. The planarizing liquid can also include agents, such as isopropyl alcohol, ammonium acetate or polyoxy ethylene ether that can increase the wetted surface area of the microelectronic substrate and/or reduce drag force imparted to the microelectronic substrate by the polishing pad.
    Type: Application
    Filed: March 19, 2002
    Publication date: July 25, 2002
    Inventors: Gundu M. Sabde, James J. Hofmann, Michael J. Joslyn, Whonchee Lee
  • Patent number: 6413834
    Abstract: The invention encompasses a semiconductor processing method in which silicon dioxide is etched with a solution that comprises an alkyl peroxide. An exemplary alkyl peroxide is methyl peroxide. The invention also encompasses a method of forming an isolation region. A patterned silicon nitride material is formed over a semiconductive substrate. The patterned silicon nitride material has an opening extending therethrough. The opening is further extended into the substrate underlying the silicon nitride material, and is then filled with silicon dioxide. Subsequently, the silicon dioxide is chemical-mechanical polished with a slurry having an alkyl peroxide therein.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: July 2, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Michael J. Joslyn
  • Patent number: 6383934
    Abstract: A method and apparatus for planarizing a microelectronic substrate. In one embodiment, the method can include planarizing the microelectronic substrate with a fixed abrasive polishing pad while maintaining the pH of a planarizing liquid adjacent the polishing pad at an approximately constant level by buffering the planarizing liquid. The planarizing liquid can include ammonium hydroxide and ammonium acetate, ammonium citrate, or potassium hydrogen phthalate. In another embodiment, the planarizing liquid can have an initially high pH that has a reduced tendency to decrease during planarization. The planarizing liquid can also include agents, such as isopropyl alcohol, ammonium acetate or polyoxy ethylene ether that can increase the wetted surface area of the microelectronic substrate and/or reduce drag force imparted to the microelectronic substrate by the polishing pad.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: May 7, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Gundu M. Sabde, James J. Hofmann, Michael J. Joslyn, Whonchee Lee