Patents by Inventor Michael J. Karagoulis

Michael J. Karagoulis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10052710
    Abstract: A method of resistance spot welding a steel workpiece and an aluminum or aluminum alloy (“aluminum”) workpiece together includes several steps. One step involves providing a workpiece stack-up with a steel workpiece and an aluminum workpiece. Another step involves attaching a cover over a weld face of a welding electrode. The cover is made of a metal material with an electrical resistivity that is greater than an electrical resistivity of a material of the welding electrode. Yet another step involves performing multiple individual resistance spot welds to the workpiece stack-up. The cover abuts the aluminum workpiece while the individual resistance spot welds are performed. And another step involves removing the cover from the welding electrode after the individual spot welds are performed.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: August 21, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20180229328
    Abstract: Aluminum-base alloy workpieces have surfaces with films of aluminum oxide which inhibit good contact with weld faces of resistance spot weld electrodes and the faying surfaces of, for example, sheet workpieces stacked for welding. Sometimes, the surfaces of the sheets also are coated with an adhesive or a sealer which further complicates welding. But in accordance with this invention, weld faces of opposing, round, copper welding electrodes are pressed against opposite outside surfaces of the sheets at a spot weld site and weld current is applied to the electrodes in accordance with a three-stage weld schedule to better form each weld. The weld schedule comprises a Conditioning stage (stage 1), a weld nugget Shaping stage (stage 2), and a weld nugget Sizing stage (stage 3).
    Type: Application
    Filed: April 16, 2018
    Publication date: August 16, 2018
    Inventors: David R. Sigler, Michael J. Karagoulis
  • Patent number: 10010966
    Abstract: A method of spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece involves passing an electrical current through the workpieces and between welding electrodes that are constructed to affect the current density of the electrical current. The welding electrodes, more specifically, are constructed to render the density of the electrical current greater in the steel workpiece than in the aluminum alloy workpiece. This difference in current densities can be accomplished by passing, at least initially, the electrical current between a weld face of the welding electrode in contact with the steel workpiece and a perimeter region of a weld face of the welding electrode in contact with the aluminum alloy workpiece.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: July 3, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David S. Yang, David R. Sigler, Blair E. Carlson, James G. Schroth, Michael J. Karagoulis
  • Patent number: 9999938
    Abstract: A workpiece stack-up that includes at least a steel workpiece and an aluminum-based workpiece can be resistance spot welded by employing a multi-stage spot welding method in which the passage of electrical current is controlled to perform multiple stages of weld joint development. The multiple stages include: (1) a molten weld pool growth stage in which a molten weld pool is initiated and grown within the aluminum-based workpiece; (2) a molten weld pool solidification stage in which the molten weld pool is allowed to cool and solidify into a weld nugget that forms all or part of a weld joint; (3) a weld nugget re-melting stage in which at least a portion of the weld nugget is re-melted; and (4) a re-melted weld nugget solidification stage in which the re-melted portion of the weld nugget is allowed to cool and solidify.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: June 19, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Blair E. Carlson, Yelena Myasnikova, Michael J. Karagoulis
  • Patent number: 9969026
    Abstract: Aluminum-base alloy workpieces have surfaces with films of aluminum oxide which inhibit good contact with weld faces of resistance spot weld electrodes and the faying surfaces of, for example, sheet workpieces stacked for welding. Sometimes, the surfaces of the sheets also are coated with an adhesive or a sealer which further complicates welding. But in accordance with this invention, weld faces of opposing, round, copper welding electrodes are pressed against opposite outside surfaces of the sheets at a spot weld site and weld current is applied to the electrodes in accordance with a three-stage weld schedule to better form each weld. The weld schedule comprises a Conditioning stage (stage 1), a weld nugget Shaping stage (stage 2), and a weld nugget Sizing stage (stage 3).
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 15, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Michael J. Karagoulis
  • Patent number: 9925617
    Abstract: Spot welding electrodes with generally dome shaped welding faces are provided with surface features for welding both aluminum alloy sheet assemblies and steel sheet assemblies. A raised circular plateau is formed on the central axis of the dome and, in one embodiment, a suitable number of round bumps are formed in concentric spacing from adjacent the circumference of the plateau toward the circular edge of the welding face. For welding steel workpieces the plateau mainly serves as the engaging feature of the electrode. Both the plateau and concentric bumps are used in penetrating light metal surfaces for suitable current passage. In another embodiment, the domed surface is shaped with concentric terraces for engagement with the workpieces.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 27, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, James G. Schroth, Michael J. Karagoulis
  • Publication number: 20180071856
    Abstract: A programmable polarity module that permits rapid on-demand control of the polarities assigned to the welding electrodes retained on a welding gun is disclosed. The programmable polarity module is electrically connectable to the welding gun and a direct current power supply unit to provide direct current to the welding electrodes for exchange during spot welding. A first interchangeable polarity output lug and a second interchangeable polarity output lug of the programmable polarity module permit the polarities of the welding electrodes to be switched without having to electrically disconnect the module from the welding gun.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Inventors: Michael J. Karagoulis, David R. Sigler
  • Patent number: 9914599
    Abstract: Disclosed are electromagnetic apparatuses for separating non-ferrous blanks, methods for making and for using such apparatuses, and automated systems with electromagnetic destacking unit for handling stacks of non-ferrous blanks. Presented is a destacking unit with a magnet placed adjacent a stack of non-ferrous blanks, and two electrical terminals placed in contact with the top blank of the stack. The magnet generates a magnetic field across the surface of the top blank. The terminals pass electrical current through the blank transversely across the top surface. The direction of the electrical current is generally normal to the direction of the magnetic field such that a magnetic separation force sufficient to displace the blank from the stack is generated in a generally vertical direction.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: March 13, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Thomas W. Nehl, James J. Abramczyk, Kenneth J. Shoemaker, Michael J. Karagoulis, James S. Dorenbecker
  • Patent number: 9908199
    Abstract: A programmable polarity module that permits rapid on-demand control of the polarities assigned to the welding electrodes retained on a welding gun is disclosed. The programmable polarity module is electrically connectable to the welding gun and a direct current power supply unit to provide direct current to the welding electrodes for exchange during spot welding. A first interchangeable polarity output lug and a second interchangeable polarity output lug of the programmable polarity module permit the polarities of the welding electrodes to be switched without having to electrically disconnect the module from the welding gun.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: March 6, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael J. Karagoulis, David R. Sigler
  • Publication number: 20170304928
    Abstract: A method of resistance spot welding workpiece stack-ups of different combinations of metal workpieces with a single weld gun using the same set of welding electrodes is disclosed. In this method, a set of opposed welding electrodes that include an original shape and oxide-disrupting structural features are used to resistance spot weld at least two of the following types of workpiece stack-ups in a particular sequence: (1) a workpiece stack-up of two or more aluminum workpieces; (2) a workpiece stack-up that includes an aluminum workpiece and an adjacent steel workpiece; and (3) a workpiece stack-up of two or more steel workpieces. The spot welding sequence calls for completing all of the aluminum-to-aluminum spot welds and/or all of the steel-to-steel spot welds last.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 26, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170297138
    Abstract: A series of many electrical resistance spot welds is to be formed in members of an assembled, but un-joined, body that presents workpiece stack-ups of various combinations of metal workpieces including all aluminum workpieces, all steel workpieces, and a combination of aluminum and steel workpieces. A pair of spot welding electrodes, each with a specified weld face that includes oxide-disrupting features, is used to form the required numbers of aluminum-to-aluminum spot welds, aluminum-to-steel spot welds, and steel-to-steel spot welds. A predetermined sequence of forming the various spot welds may be specified for extending the number of spot welds that can be made before the weld faces must be restored. And, during at least one of the aluminum-to-steel spot welds, a cover is inserted between the weld face of one of the welding electrodes and a side of a workpiece stack-up that includes the adjacent aluminum and steel workpieces.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 19, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170252853
    Abstract: A spot weld may be formed between an aluminum workpiece and an adjacent overlapping steel workpiece with the use of opposed spot welding electrodes that have mating weld faces designed for engagement with the outer surfaces of the workpiece stack-up assembly. The electrode that engages the stack-up assembly proximate the aluminum workpiece includes a central ascending convex surface and the electrode that engages the stack-up assembly proximate the steel workpiece has an annular surface. The mating weld faces of the first and second spot welding electrodes distribute the passing electrical current along a radially outwardly expanding flow path to provide a more uniform temperature distribution over the intended spot weld interface and may also produce a deformed bonding interface within the formed weld joint. Each of these events can beneficially affect the strength of the weld joint.
    Type: Application
    Filed: February 24, 2017
    Publication date: September 7, 2017
    Inventors: Hui-Ping Wang, Blair E. Carlson, David R. Sigler, Michael J. Karagoulis
  • Patent number: 9737956
    Abstract: Resistance spot welding of a thin-gauge steel workpiece to another steel workpiece is achieved through the combined use of specific spot welding electrodes and a pulsating welding current. Each of the spot welding electrodes has a weld face that is smaller in diameter than a typical steel spot welding electrode. And the pulsating welding current that is used in conjunction with the smaller-sized spot welding electrodes includes at least two stages of electrical current pulses.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: August 22, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: David Yang, Michael J. Karagoulis, David R. Sigler
  • Publication number: 20170225262
    Abstract: A cutting tool that can simultaneously cut and restore asymmetric weld face geometries of two welding electrodes that are subject to different degradation mechanisms is disclosed along with a method of using such a cutting tool during resistance spot welding of workpiece stack-ups that include dissimilar metal workpieces. The cutting tool includes a first cutting socket and a second cutting socket. The first cutting socket is defined by one or more first shearing surfaces and the second cutting is defined by one or more second shearing surfaces. The first shearing surface(s) and the second shearing surface(s) are profiled to cut and restore a first weld face geometry and a second weld face geometry, respectively, that are different from each other upon receipt of electrode weld faces within the cutting sockets and rotation of the cutting tool.
    Type: Application
    Filed: January 29, 2017
    Publication date: August 10, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170225263
    Abstract: A cutting tool that can simultaneously cut and restore asymmetric weld face geometries of two welding electrodes that are subject to different degradation mechanisms is disclosed along with a method of using such a cutting tool during resistance spot welding of workpiece stack-ups that include dissimilar metal workpieces. The cutting tool includes a first cutting socket and a second cutting socket. The first cutting socket is defined by one or more first shearing surfaces and the second cutting is defined by one or more second shearing surfaces. The first shearing surface(s) and the second shearing surface(s) are profiled to cut and restore a first weld face geometry and a second weld face geometry, respectively, that are different from each other upon receipt of electrode weld faces within the cutting sockets and rotation of the cutting tool.
    Type: Application
    Filed: January 29, 2017
    Publication date: August 10, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis, James G. Schroth
  • Patent number: 9682439
    Abstract: A welding electrode for resistance spot welding includes a weld face comprising rings of ridges that project outwardly from a base surface of the weld face. The rings of ridges are positioned on the weld face to contact and impress into a sheet metal workpiece surface during resistance spot welding. If the welding electrode is used during resistance spot welding of light metal alloy workpieces, such as those of aluminum alloy or magnesium alloy, the rings of ridges on the weld face can contribute to improved welding performance.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 20, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Michael J. Karagoulis
  • Patent number: 9676065
    Abstract: A method for welding a plurality of aluminum to aluminum welds and a plurality of steel to steel welds using the same welder includes providing a resistance spot welder with a pair of weld electrodes having an electrode face radius of curvature in the range between 20 mm and 40 mm. The series of aluminum to aluminum welds is first made, and then, after completing the aluminum to aluminum welds, the series of steel to steel welds are made. After completing the steel to steel welds the weld electrodes are cleaned by an abrasive to remove any buildup or contamination of aluminum on the electrodes. In the event the electrodes have mushroomed, then dressing of the electrodes is provided and then the abrasive cleaning is performed to restore the surface texture.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: June 13, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David R. Sigler, Michael J. Karagoulis
  • Publication number: 20170158441
    Abstract: Disclosed are electromagnetic apparatuses for separating non-ferrous blanks, methods for making and for using such apparatuses, and automated systems with electromagnetic destacking unit for handling stacks of non-ferrous blanks. Presented is a destacking unit with a magnet placed adjacent a stack of non-ferrous blanks, and two electrical terminals placed in contact with the top blank of the stack. The magnet generates a magnetic field across the surface of the top blank. The terminals pass electrical current through the blank transversely across the top surface. The direction of the electrical current is generally normal to the direction of the magnetic field such that a magnetic separation force sufficient to displace the blank from the stack is generated in a generally vertical direction.
    Type: Application
    Filed: November 30, 2016
    Publication date: June 8, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chandra S. Namuduri, Thomas W. Nehl, James J. Abramczyk, Kenneth J. Shoemaker, Michael J. Karagoulis, James S. Dorenbecker
  • Publication number: 20170106466
    Abstract: A workpiece stack-up that includes at least a steel workpiece and an adjacent and overlapping aluminum workpiece can be resistance spot welded by a multi-stage spot welding method. The multi-stage spot welding method involves initially forming a weld joint between the steel and aluminum workpieces. The weld joint extends into the aluminum workpiece from the faying interface of the two workpieces and includes an interfacial weld bond area adjacent to and joined with the faying surface of the steel workpiece. After the weld joint is initially formed, the multi-stage spot welding method calls for remelting and resolidifying at least a portion of the weld joint that includes some or all of the interfacial weld bond area. At least a portion of the resultant refined weld joint may then be subjected to the same remelting and resolidifying practice, if desired. Multiple additional practices of remelting and resolidifying may be carried out.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 20, 2017
    Inventors: David R. Sigler, Blair E. Carlson, Michael J. Karagoulis
  • Publication number: 20170072502
    Abstract: A method of resistance spot welding steel workpieces—at least one of which includes a high-strength steel substrate having a tensile strength of 1000 MPa or greater—involves passing a pulsating DC electrical current between a pair of aligned welding electrodes that are pressed against opposite sides of a workpiece stack-up that includes the steel workpieces. The pulsating DC electrical current delivers sufficient power through the weld site by way of electrical current pulses to initiate and grow a molten steel weld pool at each faying interface within the workpiece stack-up that solidifies into a weld nugget of uniform hardness. In other words, each of the weld nuggets formed by the pulsating DC electrical current does not include soft, coarse, and alloy deficient shell regions that tend to reduce the strength of the weld nugget.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Michael J. Karagoulis, David R. Sigler