Patents by Inventor Michael J. Lucido

Michael J. Lucido has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7900606
    Abstract: A system for a vehicle includes an initialization module and a purge control module. The initialization module generates an initialization signal based on a crankshaft speed signal and/or a fuel rail pressure signal. The initialization module also generates the initialization signal based on an initial purge value and an assembly-line monitoring value. The purge control module generates a purge signal to purge air from a fuel injection system of an engine. The purge signal is generated when the crankshaft speed signal indicates that a crankshaft of the engine is stationary and/or the fuel rail pressure signal indicates that a fuel rail pressure is less than a predetermined value. The purge signal is also generated based on the initialization signal.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: March 8, 2011
    Inventors: Michael J. Lucido, Mark D. Carr
  • Patent number: 7878180
    Abstract: A control system and method for controlling pump includes a pump control module communicating a drive signal to the high pressure pump and a high pressure pump in communication with the pump control module operating in response to the drive signal. A current sampling module samples a pump current signal to form a sample prior to an end of the drive signal. A current comparison module compares the sample to a threshold that may be a function of pump solenoid resistance, pump solenoid temperature, and/or system voltage, and a fault indication module generates a fault signal in response to comparing.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: February 1, 2011
    Inventors: Wenbo Wang, Michael J. Lucido, John F. Van Gilder
  • Patent number: 7856867
    Abstract: A diagnostic system for a fuel injector control system according to the present disclosure includes a plurality of state monitoring modules and a fault determination module. The plurality of state monitoring module monitor a plurality of states of a driver circuit for a fuel injector based on data samples related to the plurality of states. The fault determination module diagnoses a fault in the driver circuit when at least one of the plurality of state monitoring modules receives a predetermined number of data samples indicating an undesired state within a sampling interval.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: December 28, 2010
    Inventors: Michael J. Lucido, Wenbo Wang
  • Publication number: 20100294030
    Abstract: A diagnostic system comprises a monitoring module and a diagnostic module. The monitoring module receives a first rail pressure measured by a high side rail pressure sensor during engine cranking at a location where fuel is pressurized by a high pressure fuel pump. The diagnostic module selectively diagnoses a fault in at least one of the high pressure fuel pump and the high side rail pressure sensor when the first rail pressure is less than a predetermined pressure and rail pressures received during a predetermined period after the first rail pressure is received are less than the predetermined pressure.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael J. Lucido, Wenbo Wang, Ian J. MacEwen, Jon C. Miller
  • Publication number: 20100288231
    Abstract: An engine control system for a vehicle comprises a combustion control module and an engine startup module. The combustion control module selectively controls a spark timing and airflow into an engine based on a counter value. The engine startup module, when the counter value is one of greater than and less than a predetermined final value, controls an equivalence ratio (EQR) of an air/fuel mixture provided to the engine during an engine cranking period based on a fuel rail pressure and controls the EQR during an engine running period based on the fuel rail pressure and an engine runtime period. The counter value is set to the predetermined final value after the engine is started for a first time after the engine is assembled.
    Type: Application
    Filed: July 17, 2009
    Publication date: November 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC
    Inventors: MICHAEL C. ZUMBAUGH, JON C. MILLER, ROBERT C. GIBSON, MARK D. CARR, MICHAEL J. LUCIDO, MICHAEL N. KOTSONAS
  • Publication number: 20100275679
    Abstract: An engine control system comprises a model pressure determination module and a sensor diagnostic module. The model pressure determination module determines a modeled fuel rail pressure based on a fuel pump flow rate and an engine fuel flow rate. The sensor diagnostic module generates a status of a fuel rail pressure sensor based on a comparison of the modeled fuel rail pressure and a sensed fuel rail pressure sensed by the fuel rail pressure sensor.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Michael J. Lucido, Vincent A. White
  • Publication number: 20100280741
    Abstract: An engine control system comprises a model pressure determination module and a sensor diagnostic module. The model pressure determination module determines a modeled fuel rail pressure based on an injection duration of a fuel injector and a desired fuel mass injected by the fuel injector. The sensor diagnostic module generates a status of a fuel rail pressure sensor based on a comparison of the modeled fuel rail pressure and a sensed fuel rail pressure.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: WENBO WANG, MICHAEL J. LUCIDO, VINCENT A. WHITE, IAN J. MAC EWEN, JON C. MILLER
  • Publication number: 20100280742
    Abstract: A method and control module for operating an engine that includes a pressure range determination module that determines a pressure value for a pressure sensor in a fuel rail is out of range. A fuel rail pressure estimate module that determines a predicted pressure value. An engine control module that operates the engine using the predicted pressure value.
    Type: Application
    Filed: June 16, 2009
    Publication date: November 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: JESSE M. GWIDT, MICHAEL J. LUCIDO, JON C. MILLER, MICHAEL N. KOTSONAS
  • Patent number: 7826963
    Abstract: An engine control system includes a driver module and a diagnostics module. The driver module includes a high-side driver and a low-side driver, which selectively actuate a load. The driver module generates status signals based on detection of each of a plurality of failure modes of the high-side and low-side drivers. The diagnostics module increments a first error count for a first mode of the plurality of failure modes when the status signals indicate the driver module has detected the first mode. The diagnostics module increments a corresponding total count each time the driver module analyzes the first mode. The diagnostics module sets a fail state for a diagnostic trouble code (DTC) when the first error count for the first mode reaches a first predetermined threshold prior to the total count reaching a second predetermined threshold.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 2, 2010
    Inventors: Wenbo Wang, Mark D. Carr, Michael J. Lucido, Jon C. Miller, John F. Van Gilder, Daniel P. Grenn, Hamid M. Esfahan, Ian J. Mac Ewen
  • Publication number: 20100274442
    Abstract: A method and control module for determining a sensor error includes a time-based diagnostic module generating a time-based diagnostic for a sensor and an event-based diagnostic module generating an event-based diagnostic for the sensor. A synchronizing module synchronizes the time-based diagnostic and the event-based diagnostic to obtain a diagnostic result. A fault indicator module generates a fault signal in response to the diagnostic result.
    Type: Application
    Filed: April 28, 2009
    Publication date: October 28, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Daniel P. Grenn, John F. Van Gilder, Michael J. Lucido, Ian J. Mac Ewen, Hamid M. Esfahan
  • Publication number: 20100274462
    Abstract: A diagnostic system includes a fuel pump module and a diagnostic control module. The fuel pump module activates a first pump when an engine is operating in a diagnostic mode. The first pump supplies fuel to fuel injectors of the engine via a fuel rail. The diagnostic control module receives a measured pressure signal from a pressure sensor that indicates a pressure of the fuel rail during the diagnostic mode. The fuel pump module sends at least one of a first and a second commanded fuel pressure signal to the first pump based on a predetermined relief pressure of a pressure relief valve. The diagnostic control module detects a fault of the pressure sensor based on an engine speed and a comparison between the measured pressure signal and at least one of the first commanded fuel pressure signal and a corrected relief pressure of the pressure relief valve.
    Type: Application
    Filed: July 27, 2009
    Publication date: October 28, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Michael J. Lucido, Christopher R. Graham
  • Publication number: 20100269793
    Abstract: An engine control system includes a driver module and a diagnostics module. The driver module includes a high-side driver and a low-side driver, which selectively actuate a load. The driver module generates status signals based on detection of each of a plurality of failure modes of the high-side and low-side drivers. The diagnostics module increments a first error count for a first mode of the plurality of failure modes when the status signals indicate the driver module has detected the first mode. The diagnostics module increments a corresponding total count each time the driver module analyzes the first mode. The diagnostics module sets a fail state for a diagnostic trouble code (DTC) when the first error count for the first mode reaches a first predetermined threshold prior to the total count reaching a second predetermined threshold.
    Type: Application
    Filed: April 28, 2009
    Publication date: October 28, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Mark D. Carr, Michael J. Lucido, Jon C. Miller, John F. Van Gilder, Daniel P. Grenn, Hamid M. Esfahan, Ian J. Mac Ewen
  • Publication number: 20100269791
    Abstract: A diagnostic system for a pressure sensor includes a fuel pump module and a diagnostic control module. The fuel pump module activates a first pump and deactivates a second pump when an engine is operating in a diagnostic mode. The first pump supplies fuel to the second pump and the second pump supplies fuel to fuel injectors of the engine via a fuel rail. The diagnostic control module receives a measured pressure signal from a pressure sensor that indicates a pressure of the fuel rail during the diagnostic mode. The diagnostic control module detects a fault of the pressure sensor based on a comparison between the measured pressure signal and the commanded pressure signal for the first pump.
    Type: Application
    Filed: July 27, 2009
    Publication date: October 28, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael J. Lucido, Wenbo Wang, Christopher R. Graham
  • Publication number: 20100242582
    Abstract: An engine system includes a status determination module and an open-loop fuel control module. The status determination module determines whether a first ignition fuse is in a failure state. The open-loop fuel control module disables a first plurality of fuel injectors and actuates a second plurality of fuel injectors based on a first air/fuel (A/F) ratio when the first ignition fuse is in the failure state, wherein the first ignition fuse and the first plurality of fuel injectors correspond to a first cylinder bank, and wherein a second ignition fuse and the second plurality of fuel injectors correspond to a second cylinder bank.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Mark D. Carr, Michael J. Lucido, Jon C. Miller, Wajdi B. Hamama, Kurt D. McLain
  • Publication number: 20100212640
    Abstract: A system for a vehicle includes an initialization module and a purge control module. The initialization module generates an initialization signal based on a crankshaft speed signal and/or a fuel rail pressure signal. The initialization module also generates the initialization signal based on an initial purge value and an assembly-line monitoring value. The purge control module generates a purge signal to purge air from a fuel injection system of an engine. The purge signal is generated when the crankshaft speed signal indicates that a crankshaft of the engine is stationary and/or the fuel rail pressure signal indicates that a fuel rail pressure is less than a predetermined value. The purge signal is also generated based on the initialization signal.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 26, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael J. Lucido, Mark D. Carr
  • Patent number: 7779810
    Abstract: A fuel injection method for internal combustion engines with gasoline direct fuel injection systems comprises receiving a crankshaft position signal from a crankshaft position sensor. A position of a crankshaft is determined from the crankshaft position signal. Fuel is commanded at a first rate when the position of the crankshaft is within a first selectable range during a combustion cycle of an engine cylinder and fuel is commanded at a second rate when the position of the crankshaft is within a second selectable range during the combustion cycle of the engine cylinder.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: August 24, 2010
    Inventors: Jesse M. Gwidt, David P. Sczomak, Michael J. Lucido, James R. Reeder, Jr.
  • Publication number: 20100199752
    Abstract: A diagnostic system for a fuel injector control system according to the present disclosure includes a plurality of state monitoring modules and a fault determination module. The plurality of state monitoring module monitor a plurality of states of a driver circuit for a fuel injector based on data samples related to the plurality of states. The fault determination module diagnoses a fault in the driver circuit when at least one of the plurality of state monitoring modules receives a predetermined number of data samples indicating an undesired state within a sampling interval.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael J. Lucido, Wenbo Wang
  • Publication number: 20100192912
    Abstract: A control system and method for controlling pump includes a pump control module communicating a drive signal to the high pressure pump and a high pressure pump in communication with the pump control module operating in response to the drive signal. A current sampling module samples a pump current signal to form a sample prior to an end of the drive signal. A current comparison module compares the sample to a threshold that may be a function of pump solenoid resistance, pump solenoid temperature, and/or system voltage, and a fault indication module generates a fault signal in response to comparing.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 5, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Wenbo Wang, Michael J. Lucido, John F. Van Gilder
  • Patent number: 7765053
    Abstract: The fuel injection system includes a fuel injector that injects fuel directly into a combustion chamber of a cylinder of an engine. The control module initiates multiple fuel injections in a combustion chamber during a combustion cycle of the cylinder via the fuel injector.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: July 27, 2010
    Inventors: Jesse M. Gwidt, Michael J. Lucido, Vijay Ramappan, Halim G Santoso, Donovan L. Dibble, David J. Cleary
  • Publication number: 20100180863
    Abstract: An engine control system includes a starting module, a position module, and a deactivation module. The starting module determines when a crankshaft starts to rotate and activates a control valve of a fuel pump when the crankshaft starts to rotate. The position module determines a position of the crankshaft and determines a position of a camshaft based on the position of the crankshaft. The camshaft drives the fuel pump. The deactivation module deactivates the control valve when the position module determines the position of the camshaft.
    Type: Application
    Filed: February 25, 2009
    Publication date: July 22, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jesse M. Gwidt, Michael J. Lucido