Patents by Inventor Michael J. Nicol

Michael J. Nicol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11539130
    Abstract: A phased array antenna system has at least one trough reflector, each trough reflector having at least one phased array located at a feed point of the reflector, and an array of elements located near to a point equal to one half of a center transmission wavelength. A method of decoding a receive signal includes propagating a transmit signal through a transmit and a receive path of a phased array to generate a coupled signal, digitizing the coupled signal, storing the digitized coupled signal, receiving a signal from a target, and using the digitized coupled signal to decode the signal from the target. A method of modeling the ionosphere includes transmitting measuring pulses from an incoherent scattering radar transmitter, receiving incoherent scatter from the transmitting, and analyzing the incoherent scatter to determine pulse and amplitude of the incoherent scatter to profile electron number density of the ionosphere.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 27, 2022
    Assignee: SRI International
    Inventors: Michael J. Nicolls, Daniel P. Ceperley, Ryan C. Peterson, Bryan Klofas, David Watters, Thomas Durak, Michael Greffen, Moyra Malone, John J. Buonocore
  • Patent number: 11024958
    Abstract: A phased array antenna system has at least one trough reflector, each trough reflector having at least one phased array located at a feed point of the reflector, and an array of elements located near to a point equal to one half of a center transmission wavelength. A method of decoding a receive signal includes propagating a transmit signal through a transmit and a receive path of a phased array to generate a coupled signal, digitizing the coupled signal, storing the digitized coupled signal, receiving a signal from a target, and using the digitized coupled signal to decode the signal from the target. A method of modeling the ionosphere includes transmitting measuring pulses from an incoherent scattering radar transmitter, receiving incoherent scatter from the transmitting, and analyzing the incoherent scatter to determine pulse and amplitude of the incoherent scatter to profile electron number density of the ionosphere.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: June 1, 2021
    Assignee: SRI International
    Inventors: Michael J. Nicolls, Daniel P. Ceperley, Ryan C. Peterson, Bryan Klofas, David Watters, Thomas Durak, Michael Greffen, Moyra Malone, John J. Buonocore
  • Patent number: 8070851
    Abstract: A heap leaching method to recover copper from a primary copper sulphide mineral wherein the mineral is leached in an acidic chloride/sulphate solution in the presence of oxygen with the surface potential of the mineral below 600 mV (vs. SHE) to cause dissolution of the copper sulphide.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: December 6, 2011
    Assignee: BHP Billiton SA Limited
    Inventors: Elmar L. Muller, Petrus Basson, Michael J. Nicol
  • Publication number: 20090173188
    Abstract: A heap leaching method to recover copper from a primary copper sulphide mineral wherein the mineral is leached in an acidic chloride/sulphate solution in the presence of oxygen with the surface potential of the mineral below 600 mV (vs. SHE) to cause dissolution of the copper sulphide.
    Type: Application
    Filed: November 6, 2008
    Publication date: July 9, 2009
    Inventors: Elmar L. Muller, Petrus Basson, Michael J. Nicol
  • Patent number: 5299068
    Abstract: A laser protection device employing a gas plasma switch wherein applied laser radiation is focused inside a gas chamber, and a nuclear source is employed to pre-ionize the gas volume, whereupon focused laser radiation causes gas breakdown and plasma formation that attenuates the radiation. Specifically, the invention reduces the threshold of plasma switch initiation by incorporating a nuclear source within the gas chamber that constantly injects plasma forming seed particles into the vicinity of a focused laser beam. The plasma resulting from avalanche ionization of the seed particles reflects, absorbs and deflects the laser radiation. The nuclear source introduces charged particles, excimers and metastable atoms with low ionization potential into the gas chamber. Such charged particles are effective plasma initiators because they have low ionization thresholds. The present invention has been found well suited to protect against pulsed laser sources because of fast rise times and high attenuation levels.
    Type: Grant
    Filed: April 19, 1990
    Date of Patent: March 29, 1994
    Assignee: Hughes Aircraft Company
    Inventors: David B. Cohn, Michael J. Nicol, Mitchell B. Haeri