Patents by Inventor Michael J. Paratore, Jr.

Michael J. Paratore, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150000253
    Abstract: A method of treating an exhaust gas produced by a vehicle internal combustion engine includes conveying the gas through a first reactor including a non-thermal plasma. The gas includes nitric oxide and is transitionable between a first condition in which the gas has a cold-start temperature that is less than or equal to about 150° C., and a second condition in which the gas has an operating temperature that is greater than about 150° C. During the first condition, the method includes contacting the gas and plasma to oxidize the nitric oxide to nitrogen dioxide and form an effluent that includes nitrogen dioxide. The method includes concurrently conveying the effluent through a second reactor including a diesel oxidation catalyst, and storing the nitrogen dioxide within the second reactor during only the first condition. The method includes, after storing, releasing nitrogen dioxide from the second reactor during only the second condition.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Chang H. Kim, Steven J. Schmieg, Eugene V. Gonze, Michael J. Paratore, JR.
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Publication number: 20140360162
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided. The exhaust gas treatment system includes an electrically heated catalyst (“EHC”) device in fluid communication with an exhaust gas conduit, a generator, a selective catalytic reduction (“SCR”) device, and a control module. The EHC device includes an electric heater and an EHC catalyst that is heated to an EHC light-off temperature. The generator is selectively operable in a target voltage mode to supply a target voltage to the electric heater. The target voltage represents a voltage required by the electric heater in order to maintain the EHC catalyst at a catalyst temperature. The SCR device is in fluid communication with the exhaust gas conduit. The SCR device is located downstream of the EHC device and includes an SCR catalyst that is selectively heated by the EHC device to a SCR light-off temperature.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventors: Eugene V. Gonze, Michael J. Paratore, JR., Chandra S. Namuduri
  • Publication number: 20140352279
    Abstract: An exhaust gas treatment system for an engine includes an exhaust gas inlet tube configured to receive an exhaust gas from the engine. A particulate filter, a heat exchange system and first and second selective catalytic reduction (SCR) devices are in fluid communication with the exhaust gas inlet tube. The particulate filter is configured to undergo thermal regeneration when the exhaust gas in the particulate filter is heated above a regeneration temperature. The controller is configured to control a temperature difference, between a present temperature of the second SCR device and a predefined optimal second SCR temperature, to be within a predefined threshold during the thermal regeneration of the particulate filter. The controller may be configured to direct an injector to inject a reductant into the first SCR device when the temperature difference is below the predefined threshold, thereby controlling a NOx emission in the exhaust gas.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Eugene V. Gonze, Michael J. Paratore, JR., Joshua Clifford Bedford
  • Patent number: 8899027
    Abstract: A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: December 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Bryan N. Roos, Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8881504
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided. The exhaust gas system includes an exhaust gas conduit, a generator, a vehicle electrical system, a primary energy storage device, a rechargeable secondary energy storage device, an electrically heated catalyst (“EHC”) device, and a control module. The primary energy storage device is selectively connected to the generator. The primary energy storage device has a threshold state of charge (“SOC”). The rechargeable secondary energy storage device is selectively connected to the generator and the vehicle electrical system. The EHC device is in fluid communication with the exhaust gas conduit. The EHC device has an electric heater that is selectively connected the generator for receiving energy and a selectively activated catalyst that is heated to a respective light-off temperature.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Charles E. Solbrig, Chang H. Kim
  • Patent number: 8875505
    Abstract: In one exemplary embodiment of the invention a method for controlling a speed of an internal combustion engine includes shutting off fuel flow into a cylinder to reduce the speed of the internal combustion engine. The method also includes providing an electrical load to an alternator of the internal combustion engine, further reducing the speed of the internal combustion engine.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Scot A. Douglas, Michael J. Paratore, Jr.
  • Publication number: 20140311122
    Abstract: A particulate filter assembly, an exhaust gas treatment system having a particulate filter assembly, and a control method for flow controlled zoned regeneration of the particulate filter assembly are provided. The particulate filter assembly is configured to receive an exhaust gas stream from an internal combustion engine and includes an inlet end configured to receive the exhaust gas stream, a filter configured to remove particulates from the exhaust gas stream, a heating device positioned upstream from the filter having a plurality of zones, each zone of the plurality of zones independently operable to heat a corresponding region of the filter and an exhaust flow valve positioned downstream from the filter configured to selectively restrict flow of the exhaust gas stream through the filter.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 23, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Robert D. Straub, Michael J. Paratore, JR.
  • Patent number: 8864875
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided comprising an exhaust gas conduit, a particulate filter (“PF”) device, a hydrocarbon source and an electronic control module including operative logic which when implemented. The PF has a filter structure for removal of particulates in the exhaust gas and is selectively regenerated based on an amount of particulates trapped within the filter structure of the PF device. The control module is in communication with the internal combustion engine and the hydrocarbon source, and receives a regeneration signal indicating the amount of particulates trapped within the filter structure of the PF device. The electronic control module includes control logic for monitoring the internal combustion engine prior to a regeneration event. The electronic control module includes control logic for determining a plurality operating parameters of the internal combustion engine based on the monitoring.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Julian C. Tan
  • Patent number: 8826647
    Abstract: A method of regenerating a particulate filter is provided. The method includes estimating a stress level of the particulate filter; and selectively controlling current to a heater of the particulate filter based on the stress level.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8826652
    Abstract: A power system and a method for energizing an electrically heated catalyst are provided. The system includes a controller that generates a first control signal to set a switching device to a first operational state if the first temperature level downstream of the catalyst is less than a threshold temperature level and the engine is being decelerated. The controller further generates a second control signal to induce a generator to output a second voltage if the first temperature level is less than the threshold temperature level and the engine is being decelerated, such that the second voltage is applied through the switching device in the first operational state to the catalyst to increase a temperature of the catalyst.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Charles E. Solbrig, Michael J. Paratore, Jr.
  • Patent number: 8813478
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided, including an exhaust gas conduit, a flow-through container of absorbent particles, an electrically heated catalyst (“EHC”) device, a selective catalytic reduction (“SCR”) device, and a control module. The exhaust gas conduit is in fluid communication with, and is configured to receive an exhaust gas from the internal combustion engine. The exhaust gas contains oxides of nitrogen (“NOx”) and water. The flow-through container of absorbent particles is in fluid communication with the exhaust gas conduit and configured to receive the exhaust gas. The flow-through container substantially adsorbs the water from the exhaust gas below a threshold temperature. The EHC device is in fluid communication with the exhaust gas conduit and is configured to receive the exhaust gas. The EHC device is located downstream of the flow through container, and is selectively activated to produce heat.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 26, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Chang H. Kim, Steven J. Schmieg
  • Patent number: 8818691
    Abstract: In one exemplary embodiment of the invention, an internal combustion engine includes a fuel system in fluid communication with a cylinder to direct a fuel flow to be mixed with air in the cylinder and an exhaust system in fluid communication with the cylinder to receive an exhaust gas produced by the combustion process, wherein the exhaust system includes an oxidation catalyst, a particulate filter downstream of the oxidation catalyst. The system also includes a control module that determines an amount of energy to be provided by at least one of: a post-injection process, hydrocarbon injector, and heating device, wherein the amount of energy is based on a desired temperature at a selected location in the exhaust system, an exhaust gas flow rate, a temperature of the received exhaust gas, a flow rate and temperature of the exhaust gas at the inlet of the oxidation catalyst.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 26, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Scot A. Douglas, Michael J. Paratore, Jr., Jason Daniel Mullins, Patrick Barasa
  • Publication number: 20140230408
    Abstract: In one embodiment, a method for controlling nitrogen oxides in an exhaust gas received by an exhaust system, the exhaust system including a first selective catalytic reduction device, an exhaust gas heat recovery device and a second selective catalytic reduction device is provided. The method includes flowing the exhaust gas from an internal combustion engine into the first selective catalytic reduction device, receiving the exhaust gas from the first selective catalytic reduction device into the exhaust gas heat recovery device and directing the exhaust gas to a heat exchanger in the exhaust gas heat recovery device based on a temperature of the internal combustion engine proximate moving engine components. The method includes adsorbing nitrogen oxides from the exhaust gas via a nitrogen oxide adsorbing catalyst disposed in the heat exchanger and flowing the exhaust gas from the exhaust gas heat recovery device into the second selective catalytic reduction device.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Chang H. Kim, Michael J. Paratore, JR., George M. Claypole
  • Patent number: 8776495
    Abstract: An exhaust gas after treatment system for an internal combustion engine comprises an oxidation catalyst device having a first substrate, a heater, and a second substrate disposed serially between the inlet and the outlet. A hydrocarbon supply is connected to and is in fluid communication with the exhaust system upstream of the oxidation catalyst device for delivery of a hydrocarbon thereto. The heater is configured to oxidize the hydrocarbon therein and to raise the temperature of the second substrate and exhaust gas passing therethrough.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: July 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr.
  • Publication number: 20140190147
    Abstract: A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan N. Roos, Eugene V. Gonze, Michael J. Paratore, JR.
  • Patent number: 8769932
    Abstract: A cold start NO2 generation system includes a catalyst control module that identifies a portion of a three-way catalyst that corresponds to a nitrogen dioxide zone. A diagnostic module determines a temperature in the nitrogen dioxide zone, and a fuel control module adjusts an air/fuel ratio based on the temperature in the nitrogen dioxide zone. A cold start NO2 generation method includes identifying a portion of a three-way catalyst that corresponds to a nitrogen dioxide zone. The method further includes determining a temperature in the nitrogen dioxide zone and adjusting an air/fuel ratio based on the temperature in the nitrogen dioxide zone.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: July 8, 2014
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Chang H. Kim, Steven J. Schmieg
  • Patent number: 8756917
    Abstract: An exhaust gas treatment system for an internal combustion engine comprises a particulate filter assembly configured to receive exhaust gas from the engine. The particulate filter assembly comprises an electrically heated catalyst, a particulate filter disposed downstream of the electrically heated catalyst, a hydrocarbon injector, in fluid communication with the exhaust gas, upstream of the electrically heated catalyst and configured to inject excess hydrocarbon into the exhaust gas, an air pump in fluid communication with the exhaust gas upstream of the electrically heated catalyst and configured to deliver air to the exhaust gas to increase the volumetric gas flow rate through, and to decrease the heat residence time in, the particulate filter and a controller configured to operate the hydrocarbon injector, the electrically heated catalyst and the air pump based on predetermined exhaust gas flow rates, temperature thresholds and particulate loadings within the particulate filter.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: June 24, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Garima Bhatia
  • Publication number: 20140165535
    Abstract: A method for controlling regeneration within an after-treatment component of an engine comprises receiving a signal indicative of whether the engine is in an operating state or a non-operating state and detecting, based on the signal, when the engine has departed an operating state and entered a non-operating state. When the engine has departed an operating state and entered a non-operating state, a regeneration event is initiated. The regeneration event comprises causing a stream of air to flow through the after-treatment component and initiating a flow of fuel into the stream of air.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, JR., Charles E. Solbrig
  • Publication number: 20140157982
    Abstract: A method for implementing particulate filter regeneration management is provided. The method includes determining a presumptive deviation between a particulate model and actual particulate level conditions of the particulate filter. The presumptive deviation is determined from identification of an occurrence of extended parking, a passive regeneration, residual particulates, and a pressure signal. Each of the extended parking, passive regeneration, residual particulate, and pressure signal is specified by a respective particulate model deviation type. The method also includes selectively controlling current to at least one zone of a plurality of zones of an electric heater to initiate a regeneration event based on the presumptive deviation, and estimating the particulate level in the particulate filter once the regeneration event is complete.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michelangelo Ardanese, Raffaello Ardanese, Michael J. Paratore, JR., Eugene V. Gonze