Patents by Inventor Michael J. Pellin

Michael J. Pellin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741386
    Abstract: Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu2ZnSnS4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 3, 2014
    Assignee: Uchicago Argonne, LLC
    Inventors: Elijah J. Thimsen, Shannon C. Riha, Alex B. F. Martinson, Jeffrey W. Elam, Michael J. Pellin
  • Publication number: 20140093645
    Abstract: Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu2ZnSnS4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Inventors: Elijah J. THIMSEN, Shannon C. RIHA, Alex B.F. MARTINSON, Jeffrey W. ELAM, Michael J. PELLIN
  • Publication number: 20130223469
    Abstract: Systems and methods for producing crystalline materials by atomic layer deposition, allowing for high control of localized doping. Such materials may be fibers or films suitable for use in optoelectronics and lasers.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: Thomas Proslier, Nicholas G. Becker, Michael J. Pellin, Jeffrey Klug, Jeffrey W. Elam
  • Patent number: 8518179
    Abstract: Systems and methods for producing crystalline materials by atomic layer deposition, allowing for high control of localized doping. Such materials may be fibers or films suitable for use in optoelectronics and lasers.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 27, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Thomas Proslier, Nicholas G. Becker, Michael J. Pellin, Jeffrey Klug, Jeffrey W. Elam
  • Patent number: 8518845
    Abstract: A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 27, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Patent number: 8463342
    Abstract: Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 11, 2013
    Assignee: Uchicago Argonne, LLC
    Inventors: James H. Norem, Michael J. Pellin
  • Publication number: 20130081686
    Abstract: Systems and methods for cavity mode enhancement in dye-sensitized solar cells are provided. A dye-sensitized solar cell generally comprises a transparent substrate, an anode layer, an oxide layer, a dye layer, a cathode, and an electrolyte. The anode layer is deposited on a surface of the transparent substrate. The oxide layer is deposited on the anode layer and the dye is deposited on the oxide layer. A cathode is disposed adjacent to the dye layer and an electrolyte is disposed between the anode layer and the cathode.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Inventors: Alex B. F. Martinson, Noel C. Giebink, Gary P. Wiederrecht, Daniel Rosenmann, Michael R. Wasielewski, Michael J. Pellin
  • Patent number: 8318248
    Abstract: Methods for the selective deposition of materials within a porous substrate. The methods use the passivating effects of masking precursors applied to the porous substrate. A portion of a pore surface within the substrate is masked by exposing the substrate to one or more masking precursors. The depth of the pore surface that is masked is controllable by regulating the exposure of the substrate to the masking precursor. Application of the masking precursor prevents adsorption of one or more subsequently applied metal precursors about a portion of the pore surface coated by the masking precursor. Less than an entirety of the unmasked pore surface is coated by the metal precursor, forming a metal stripe on a portion of the pore surface. The depth of the metal stripe is controllable by regulating exposure of the porous substrate to the metal precursor. Subsequent exposure of the substrate to a saturating water application oxidizes the deposited precursors.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 27, 2012
    Assignee: Uchicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Joseph A. Libera, Michael J. Pellin, Peter C. Stair
  • Patent number: 8258398
    Abstract: A heterojunction photovoltaic cell. The cell includes a nanoporous substrate, a transparent conducting oxide disposed on the nanoporous substrate, a nanolaminate film deposited on the nanoporous substrate surface, a sensitizer dye disposed on a wide band gap semiconducting oxide and a redox shuttle positioned within the layer structure.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: September 4, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Michael J. Pellin, Jeffrey W. Elam, Ulrich Welp, Alex B. F. Martinson, Joseph T. Hupp
  • Publication number: 20120219824
    Abstract: A method of preparing a superconducting thin film of niobium silicide using atomic layer deposition (ALD) where the superconducting critical temperature of the film is controllable by modulating the thickness of the thin film. The film is formed by exposing a substrate within an ALD reactor to alternating exposures of a niobium halide (NbQx) and a reducing precursor, for example, disilane (Si2H6) or silane (SiH4). A number of ALD cycles are performed to obtain the film thickness and establish the desired superconducting critical temperature between 0.4 K and 3.1 K.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Inventors: Thomas Prolier, Jeffrey Elam, Jeffrey Klug, Michael J. Pellin
  • Patent number: 8148293
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 3, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Patent number: 8143189
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 27, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Publication number: 20110210259
    Abstract: A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.
    Type: Application
    Filed: February 22, 2011
    Publication date: September 1, 2011
    Inventors: Jeffrey W. Elam, Hsien-Hau Wang, Michael J. Pellin, Karen Byrum, Henry J. Frisch, Seon W. Lee
  • Patent number: 7972569
    Abstract: A catalyst includes a carrier body and a catalytic portion carried by the carrier body. The catalytic portion includes a plurality of distinct layers of catalytic material, which layers may be deposited through atomic layer deposition techniques. The catalyst may have a selectivity for the conversion of alkanes to alkenes of over 50%. The catalyst may be incorporated in a reactor such as a fluidized bed reactor or a single pass reactor.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: July 5, 2011
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Michael J. Pellin, Joseph A. Libera, Peter C. Stair, Gerry Zajac, Steven A. Cohen
  • Publication number: 20110045969
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Application
    Filed: August 26, 2010
    Publication date: February 24, 2011
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Publication number: 20100300524
    Abstract: A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N?-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H2S) to prepare a Cu2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.
    Type: Application
    Filed: May 14, 2010
    Publication date: December 2, 2010
    Inventors: Alex MARTINSON, Jeffrey W. Elam, Michael J. Pellin
  • Patent number: 7713907
    Abstract: The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: May 11, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Michael J. Pellin, Peter C. Stair
  • Patent number: 7709056
    Abstract: A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: May 4, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Alex B. F. Martinson, Michael J. Pellin, Joseph T. Hupp
  • Publication number: 20100075827
    Abstract: A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Application
    Filed: November 2, 2009
    Publication date: March 25, 2010
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Publication number: 20090312186
    Abstract: Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.
    Type: Application
    Filed: October 6, 2008
    Publication date: December 17, 2009
    Inventors: James H. Norem, Michael J. Pellin