Patents by Inventor Michael J. Risbeck

Michael J. Risbeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11131473
    Abstract: A heating, ventilation, or air conditioning system (HVAC) design and operational tool includes one or more processors and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including obtaining a dynamic temperature model and a dynamic infectious quanta model for one or more building zones, determining an infection probability, and performing a plurality of simulations for a plurality of different equipment configurations using the dynamic temperature model, the dynamic infectious quanta model, and the infection probability to generate results. The operations include generating, using the results of the plurality of simulations, at least one of design including one or more recommended design parameters data or operational data including one or more recommended operational parameters for the HVAC system and initiating an automated action using at least one of the design data or the operational data.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: September 28, 2021
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Michael J. Risbeck, Kirk H. Drees, Jonathan D. Douglas
  • Patent number: 11098920
    Abstract: A heating, ventilation, or air conditioning system (HVAC) design and operational tool includes one or more processors and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including obtaining a dynamic temperature model and a dynamic infectious quanta model for one or more building zones, determining an infection probability, and performing a plurality of simulations for a plurality of different equipment configurations using the dynamic temperature model, the dynamic infectious quanta model, and the infection probability to generate results. The operations include generating, using the results of the plurality of simulations, at least one of design including one or more recommended design parameters data or operational data including one or more recommended operational parameters for the HVAC system and initiating an automated action using at least one of the design data or the operational data.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: August 24, 2021
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Michael J. Risbeck, Kirk H. Drees, Jonathan D. Douglas
  • Publication number: 20210041127
    Abstract: A controller for HVAC equipment stores a cascaded model that includes a disturbance model configured to predict a heat disturbance affecting the building zone as a function of one or more exogenous parameters and a physics model configured to predict a temperature of the building zone as a function of the heat disturbance and an amount of heating or cooling provided to the building zone by HVAC equipment. The processing circuit is configured to execute a combined training procedure to determine parameters of the disturbance model and parameters of the physics model, generate control signals for the HVAC equipment using the disturbance model to predict the heat disturbance and applying the heat disturbance as an input to the physics model, and operate the HVAC equipment to provide the heating or cooling to the building zone in accordance with the control signals.
    Type: Application
    Filed: June 19, 2020
    Publication date: February 11, 2021
    Applicant: Johnson Controls Technology Company
    Inventors: MICHAEL J. RISBECK, MICHAEL J. WENZEL, MOHAMMAD N. ELBSAT
  • Publication number: 20210011444
    Abstract: A heating, ventilation, or air conditioning (HVAC) system for one or more building zones includes airside HVAC equipment operable to provide clean air to the one or more building zones and a controller. The controller is configured to obtain a dynamic temperature model and a dynamic infectious quanta model for the one or more building zones, determine an infection probability, and generate control decisions for the airside HVAC equipment using the dynamic temperature model, the dynamic infectious quanta model, and the infection probability.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 14, 2021
    Applicant: Johnson Controls Technology Company
    Inventors: Michael J. RISBECK, Kirk H. Drees, Jonathan D. Douglas
  • Publication number: 20200348038
    Abstract: A heating, ventilation, or air conditioning system (HVAC) design and operational tool includes one or more processors and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including obtaining a dynamic temperature model and a dynamic infectious quanta model for one or more building zones, determining an infection probability, and performing a plurality of simulations for a plurality of different equipment configurations using the dynamic temperature model, the dynamic infectious quanta model, and the infection probability to generate results. The operations include generating, using the results of the plurality of simulations, at least one of design including one or more recommended design parameters data or operational data including one or more recommended operational parameters for the HVAC system and initiating an automated action using at least one of the design data or the operational data.
    Type: Application
    Filed: July 13, 2020
    Publication date: November 5, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Michael J. RISBECK, Kirk H. Drees, Jonathan D. Douglas
  • Patent number: 10761547
    Abstract: A building HVAC system includes a waterside system and an airside system. The waterside system consumes one or more resources from utility providers to generate a heated and/or chilled fluid. The airside system uses the heated and/or chilled fluid to heat and/or cool a supply airflow provided to the building. A HVAC controller performs an integrated airside/waterside optimization process to simultaneously determine control outputs for both the waterside system and the airside system. The optimization process includes optimizing a predictive cost model that predicts the cost of the resources consumed by the HVAC system, subject to a set of optimization constraints including temperature constraints for the building. The HVAC controller uses the determined control outputs to control the HVAC equipment of the waterside system and the airside system.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: September 1, 2020
    Assignee: Johnson Controls Technology Company
    Inventors: Michael J. Risbeck, Robert D. Turney, Christos T. Maravelias
  • Publication number: 20200125045
    Abstract: A controller for heating, ventilation, or air conditioning (HVAC) equipment including a processing circuit configured to perform a first optimization to generate a first set of control decisions for HVAC equipment including waterside HVAC equipment that consume resources from utility providers to generate a heated or chilled fluid and airside HVAC equipment that receive and use the fluid from the waterside HVAC equipment to heat or cool a supply of airflow for a building. The processing circuit is configured to perform a second optimization subject to a constraint based on a result of the first optimization to generate a second set of control decisions for the HVAC equipment and to combine the first and second sets to generate a combined set of control decisions for the HVAC equipment. The processing circuit is configured to operate the HVAC equipment in accordance with the combined set of control decisions.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Applicant: Johnson Controls Technology Company
    Inventors: Michael J. Risbeck, Robert D. Turney, Christos T. Maravelias
  • Publication number: 20160313751
    Abstract: A building HVAC system includes a waterside system and an airside system. The waterside system consumes one or more resources from utility providers to generate a heated and/or chilled fluid. The airside system uses the heated and/or chilled fluid to heat and/or cool a supply airflow provided to the building. A HVAC controller performs an integrated airside/waterside optimization process to simultaneously determine control outputs for both the waterside system and the airside system. The optimization process includes optimizing a predictive cost model that predicts the cost of the resources consumed by the HVAC system, subject to a set of optimization constraints including temperature constraints for the building. The HVAC controller uses the determined control outputs to control the HVAC equipment of the waterside system and the airside system.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 27, 2016
    Applicant: Johnson Controls Technology Company
    Inventors: Michael J. Risbeck, Robert D. Turney, Christos T. Maravelias