Patents by Inventor Michael J. Scavezze
Michael J. Scavezze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10062213Abstract: A system for generating a virtual gaming environment based on features identified within a real-world environment, and adapting the virtual gaming environment over time as the features identified within the real-world environment change is described. Utilizing the technology described, a person wearing a head-mounted display device (HMD) may walk around a real-world environment and play a virtual game that is adapted to that real-world environment. For example, the HMD may identify environmental features within a real-world environment such as five grassy areas and two cars, and then spawn virtual monsters based on the location and type of the environmental features identified. The location and type of the environmental features identified may vary depending on the particular real-world environment in which the HMD exists and therefore each virtual game may look different depending on the particular real-world environment.Type: GrantFiled: August 11, 2016Date of Patent: August 28, 2018Assignee: Microsoft Technology Licensing, LLCInventors: Brian J. Mount, Jason Scott, Ryan L. Hastings, Darren Bennett, Stephen G. Latta, Daniel J. McCulloch, Kevin A. Geisner, Jonathan T. Steed, Michael J. Scavezze
-
Publication number: 20160350978Abstract: A system for generating a virtual gaming environment based on features identified within a real-world environment, and adapting the virtual gaming environment over time as the features identified within the real-world environment change is described. Utilizing the technology described, a person wearing a head-mounted display device (HMD) may walk around a real-world environment and play a virtual game that is adapted to that real-world environment. For example, the HMD may identify environmental features within a real-world environment such as five grassy areas and two cars, and then spawn virtual monsters based on the location and type of the environmental features identified. The location and type of the environmental features identified may vary depending on the particular real-world environment in which the HMD exists and therefore each virtual game may look different depending on the particular real-world environment.Type: ApplicationFiled: August 11, 2016Publication date: December 1, 2016Applicant: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Brian J. Mount, Jason Scott, Ryan L. Hastings, Darren Bennett, Stephen G. Latta, Daniel J. McCulloch, Kevin A. Geisner, Jonathan T. Steed, Michael J. Scavezze
-
Patent number: 9454849Abstract: A system for generating a virtual gaming environment based on features identified within a real-world environment, and adapting the virtual gaming environment over time as the features identified within the real-world environment change is described. Utilizing the technology described, a person wearing a head-mounted display device (HMD) may walk around a real-world environment and play a virtual game that is adapted to that real-world environment. For example, the HMD may identify environmental features within a real-world environment such as five grassy areas and two cars, and then spawn virtual monsters based on the location and type of the environmental features identified. The location and type of the environmental features identified may vary depending on the particular real-world environment in which the HMD exists and therefore each virtual game may look different depending on the particular real-world environment.Type: GrantFiled: November 29, 2012Date of Patent: September 27, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Brian J. Mount, Jason Scott, Ryan L. Hastings, Darren Bennett, Stephen G. Latta, Daniel J. McCulloch, Kevin A. Geisner, Jonathan T. Steed, Michael J. Scavezze
-
Patent number: 9390561Abstract: Methods for generating and displaying personalized virtual billboards within an augmented reality environment are described. The personalized virtual billboards may facilitate the sharing of personalized information between persons within an environment who have varying degrees of acquaintance (e.g., ranging from close familial relationships to strangers). In some embodiments, a head-mounted display device (HMD) may detect a mobile device associated with a particular person within an environment, acquire a personalized information set corresponding with the particular person, generate a virtual billboard based on the personalized information set, and display the virtual billboard on the HMD. The personalized information set may include information associated with the particular person such as shopping lists and classified advertisements.Type: GrantFiled: April 12, 2013Date of Patent: July 12, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Cameron G. Brown, Abby Lee, Brian J. Mount, Daniel J. McCulloch, Michael J. Scavezze, Ryan L. Hastings, John Bevis, Mike Thomas, Ron Amador-Leon
-
Patent number: 9311718Abstract: Methods for controlling the display of content as the content is being viewed by an end user of a head-mounted display device (HMD) are described. In some embodiments, an HMD may display the content using a virtual content reader for reading the content. The content may comprise text and/or images, such as text or images associated with an electronic book, an electronic magazine, a word processing document, a webpage, or an email. The virtual content reader may provide automated content scrolling based on a rate at which the end user reads a portion of the displayed content on the virtual content reader. In one embodiment, an HMD may combine automatic scrolling of content displayed on the virtual content reader with user controlled scrolling (e.g., via head tracking of the end user of the HMD).Type: GrantFiled: January 23, 2014Date of Patent: April 12, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Michael J. Scavezze, Adam G. Poulos, Johnathan Robert Bevis, Nicholas Gervase Fajt, Cameron G. Brown, Daniel J. McCulloch, Jeremy Lee
-
Patent number: 9292085Abstract: Technology is described for automatically determining placement of one or more interaction zones in an augmented reality environment in which one or more virtual features are added to a real environment. An interaction zone includes at least one virtual feature and is associated with a space within the augmented reality environment with boundaries of the space determined based on the one or more real environment features. A plurality of activation criteria may be available for an interaction zone and at least one may be selected based on at least one real environment feature. The technology also describes controlling activation of an interaction zone within the augmented reality environment. In some examples, at least some behavior of a virtual object is controlled by emergent behavior criteria which defines an action independently from a type of object in the real world environment.Type: GrantFiled: June 29, 2012Date of Patent: March 22, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Darren Bennett, Brian J. Mount, Michael J. Scavezze, Daniel J. McCulloch, Anthony J. Ambrus, Jonathan T. Steed, Arthur C. Tomlin, Kevin A. Geisner
-
Patent number: 9288468Abstract: Techniques are provided for viewing windows for video streams. A video stream from a video capture device is accessed. Data that describes movement or position of a person is accessed. A viewing window is placed in the video stream based on the data that describes movement or position of the person. The viewing window is provided to a display device in accordance with the placement of the viewing window in the video stream. Motion sensors can detect motion of the person carrying the video capture device in order to dampen the motion such that the video on the remote display does not suffer from motion artifacts. Sensors can also track the eye gaze of either the person carrying the mobile video capture device or the remote display device to enable control of the spatial region of the video stream shown at the display device.Type: GrantFiled: June 29, 2011Date of Patent: March 15, 2016Assignee: Microsoft Technology Licensing, LLCInventors: Benjamin I. Vaught, Alex Aben-Athar Kipman, Michael J. Scavezze, Arthur C. Tomlin, Relja Markovic, Darren Bennett, Stephen G. Latta
-
Patent number: 9268406Abstract: Technology is described for providing a virtual spectator experience for a user of a personal A/V apparatus including a near-eye, augmented reality (AR) display. A position volume of an event object participating in an event in a first 3D coordinate system for a first location is received and mapped to a second position volume in a second 3D coordinate system at a second location remote from where the event is occurring. A display field of view of the near-eye AR display at the second location is determined, and real-time 3D virtual data representing the one or more event objects which are positioned within the display field of view are displayed in the near-eye AR display. A user may select a viewing position from which to view the event. Additionally, virtual data of a second user may be displayed at a position relative to a first user.Type: GrantFiled: June 29, 2012Date of Patent: February 23, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Kevin A. Geisner, Kathryn Stone Perez, Stephen G. Latta, Ben J. Sugden, Benjamin I. Vaught, Alex Aben-Athar Kipman, Michael J. Scavezze, Daniel J. McCulloch, Darren Bennett, Jason Scott, Ryan L. Hastings, Brian E. Keane, Christopher E. Miles, Robert L. Crocco, Jr., Mathew J. Lamb
-
Publication number: 20150206321Abstract: Methods for controlling the display of content as the content is being viewed by an end user of a head-mounted display device (HMD) are described. In some embodiments, an HMD may display the content using a virtual content reader for reading the content. The content may comprise text and/or images, such as text or images associated with an electronic book, an electronic magazine, a word processing document, a webpage, or an email. The virtual content reader may provide automated content scrolling based on a rate at which the end user reads a portion of the displayed content on the virtual content reader. In one embodiment, an HMD may combine automatic scrolling of content displayed on the virtual content reader with user controlled scrolling (e.g., via head tracking of the end user of the HMD).Type: ApplicationFiled: January 23, 2014Publication date: July 23, 2015Inventors: Michael J. Scavezze, Adam G. Poulos, Johnathan Robert Bevis, Nicholas Gervase Fajt, Cameron G. Brown, Daniel J. McCulloch, Jeremy Lee
-
Patent number: 9041622Abstract: Technology is described for controlling a virtual object displayed by a near-eye, augmented reality display with a real controller device. User input data is received from a real controller device requesting an action to be performed by the virtual object. A user perspective of the virtual object being displayed by the near-eye, augmented reality display is determined. The user input data requesting the action to be performed by the virtual object is applied based on the user perspective, and the action is displayed from the user perspective. The virtual object to be controlled by the real controller device may be identified based on user input data which may be from a natural user interface (NUI). A user selected force feedback object may also be identified, and the identification may also be based on NUI input data.Type: GrantFiled: June 12, 2012Date of Patent: May 26, 2015Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Daniel J. McCulloch, Arnulfo Zepeda Navratil, Jonathan T. Steed, Ryan L. Hastings, Jason Scott, Brian J. Mount, Holly A. Hirzel, Darren Bennett, Michael J. Scavezze
-
Publication number: 20140306994Abstract: Methods for generating and displaying personalized virtual billboards within an augmented reality environment are described. The personalized virtual billboards may facilitate the sharing of personalized information between persons within an environment who have varying degrees of acquaintance (e.g., ranging from close familial relationships to strangers). In some embodiments, a head-mounted display device (HMD) may detect a mobile device associated with a particular person within an environment, acquire a personalized information set corresponding with the particular person, generate a virtual billboard based on the personalized information set, and display the virtual billboard on the HMD. The personalized information set may include information associated with the particular person such as shopping lists and classified advertisements.Type: ApplicationFiled: April 12, 2013Publication date: October 16, 2014Inventors: Cameron G. Brown, Abby Lee, Brian J. Mount, Daniel J. McCulloch, Michael J. Scavezze, Ryan L. Hastings, John Bevis, Mike Thomas, Ron Amador-Leon
-
Patent number: 8752963Abstract: The technology provides various embodiments for controlling brightness of a see-through, near-eye mixed display device based on light intensity of what the user is gazing at. The opacity of the display can be altered, such that external light is reduced if the wearer is looking at a bright object. The wearer's pupil size may be determined and used to adjust the brightness used to display images, as well as the opacity of the display. A suitable balance between opacity and brightness used to display images may be determined that allows real and virtual objects to be seen clearly, while not causing damage or discomfort to the wearer's eyes.Type: GrantFiled: November 4, 2011Date of Patent: June 17, 2014Assignee: Microsoft CorporationInventors: Daniel J. McCulloch, Ryan L. Hastings, Kevin A. Geisner, Robert L. Crocco, Alexandru O. Balan, Derek L. Knee, Michael J. Scavezze, Stephen G. Latta, Brian J. Mount
-
Publication number: 20140002444Abstract: Technology is described for automatically determining placement of one or more interaction zones in an augmented reality environment in which one or more virtual features are added to a real environment. An interaction zone includes at least one virtual feature and is associated with a space within the augmented reality environment with boundaries of the space determined based on the one or more real environment features. A plurality of activation criteria may be available for an interaction zone and at least one may be selected based on at least one real environment feature. The technology also describes controlling activation of an interaction zone within the augmented reality environment. In some examples, at least some behavior of a virtual object is controlled by emergent behavior criteria which defines an action independently from a type of object in the real world environment.Type: ApplicationFiled: June 29, 2012Publication date: January 2, 2014Inventors: Darren Bennett, Brian J. Mount, Michael J. Scavezze, Daniel J. McCulloch, Anthony J. Ambrus, Jonathan T. Steed, Arthur C. Tomlin, Kevin A. Geisner
-
Publication number: 20130335405Abstract: A system and method are disclosed for building and experiencing three-dimensional virtual objects from within a virtual environment in which they will be viewed upon completion. A virtual object may be created, edited and animated using a natural user interface while the object is displayed to the user in a three-dimensional virtual environment.Type: ApplicationFiled: June 18, 2012Publication date: December 19, 2013Inventors: Michael J. Scavezze, Jonathan T. Steed, Ryan L. Hastings, Stephen G. Latta, Daniel J. McCulloch
-
Publication number: 20130328762Abstract: Technology is described for controlling a virtual object displayed by a near-eye, augmented reality display with a real controller device. User input data is received from a real controller device requesting an action to be performed by the virtual object. A user perspective of the virtual object being displayed by the near-eye, augmented reality display is determined. The user input data requesting the action to be performed by the virtual object is applied based on the user perspective, and the action is displayed from the user perspective. The virtual object to be controlled by the real controller device may be identified based on user input data which may be from a natural user interface (NUI). A user selected force feedback object may also be identified, and the identification may also be based on NUI input data.Type: ApplicationFiled: June 12, 2012Publication date: December 12, 2013Inventors: Daniel J. McCulloch, Arnulfo Zepeda Navratil, Jonathan T. Steed, Ryan L. Hastings, Jason Scott, Brian J. Mount, Holly A. Hirzel, Darren Bennett, Michael J. Scavezze
-
Publication number: 20130328927Abstract: A system for generating a virtual gaming environment based on features identified within a real-world environment, and adapting the virtual gaming environment over time as the features identified within the real-world environment change is described. Utilizing the technology described, a person wearing a head-mounted display device (HMD) may walk around a real-world environment and play a virtual game that is adapted to that real-world environment. For example, the HMD may identify environmental features within a real-world environment such as five grassy areas and two cars, and then spawn virtual monsters based on the location and type of the environmental features identified. The location and type of the environmental features identified may vary depending on the particular real-world environment in which the HMD exists and therefore each virtual game may look different depending on the particular real-world environment.Type: ApplicationFiled: November 29, 2012Publication date: December 12, 2013Inventors: Brian J. Mount, Jason Scott, Ryan L. Hastings, Darren Bennett, Stephen G. Latta, Daniel J. McCulloch, Kevin A. Geisner, Jonathan T. Steed, Michael J. Scavezze
-
Publication number: 20130114043Abstract: The technology provides various embodiments for controlling brightness of a see-through, near-eye mixed display device based on light intensity of what the user is gazing at. The opacity of the display can be altered, such that external light is reduced if the wearer is looking at a bright object. The wearer's pupil size may be determined and used to adjust the brightness used to display images, as well as the opacity of the display. A suitable balance between opacity and brightness used to display images may be determined that allows real and virtual objects to be seen clearly, while not causing damage or discomfort to the wearer's eyes.Type: ApplicationFiled: November 4, 2011Publication date: May 9, 2013Inventors: Alexandru O. Balan, Ryan L. Hastings, Stephen G. Latta, Michael J. Scavezze, Daniel J. McCulloch, Derek L. Knee, Brian J. Mount, Kevin A. Geisner, Robert L. Crocco
-
Publication number: 20130083173Abstract: Technology is described for providing a virtual spectator experience for a user of a personal A/V apparatus including a near-eye, augmented reality (AR) display. A position volume of an event object participating in an event in a first 3D coordinate system for a first location is received and mapped to a second position volume in a second 3D coordinate system at a second location remote from where the event is occurring. A display field of view of the near-eye AR display at the second location is determined, and real-time 3D virtual data representing the one or more event objects which are positioned within the display field of view are displayed in the near-eye AR display. A user may select a viewing position from which to view the event. Additionally, virtual data of a second user may be displayed at a position relative to a first user.Type: ApplicationFiled: June 29, 2012Publication date: April 4, 2013Inventors: Kevin A. Geisner, Kathryn Stone Perez, Stephen G. Latta, Ben J. Sugden, Benjamin I. Vaught, Alex Aben-Athar Kipman, Michael J. Scavezze, Daniel J. McCulloch, Darren Bennett, Jason Scott, Ryan L. Hastings, Brian E. Keane, Christopher E. Miles, Robert L. Crocco, JR., Mathew J. Lamb
-
Publication number: 20130002813Abstract: Techniques are provided for viewing windows for video streams. A video stream from a video capture device is accessed. Data that describes movement or position of a person is accessed. A viewing window is placed in the video stream based on the data that describes movement or position of the person. The viewing window is provided to a display device in accordance with the placement of the viewing window in the video stream. Motion sensors can detect motion of the person carrying the video capture device in order to dampen the motion such that the video on the remote display does not suffer from motion artifacts. Sensors can also track the eye gaze of either the person carrying the mobile video capture device or the remote display device to enable control of the spatial region of the video stream shown at the display device.Type: ApplicationFiled: June 29, 2011Publication date: January 3, 2013Inventors: Benjamin I. Vaught, Alex Aben-Athar Kipman, Michael J. Scavezze, Arthur C. Tomlin, Relja Markovic, Darren Bennett, Stephen G. Latta