Patents by Inventor Michael J. Scott

Michael J. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970524
    Abstract: The invention provides recombinant Roundabout Receptor 2 (ROBO2) proteins designed to bind SLIT ligands and prevent their binding to ROBO2 cell surface receptors. Also provided are methods for use of these recombinant ROBO2 proteins.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: April 30, 2024
    Assignees: PFIZER INC., BOSTON MEDICAL CENTER CORPORATION
    Inventors: Stephen Berasi, Janet Elizabeth Buhlmann, Nathan Higginson-Scott, Michael Shamashkin, Matthew Russo, Stefano V. Gulla, Zong Sean Juo, Sreekumar R. Kodangattil, Weining Lu, Xueping Fan, David J. Salant
  • Publication number: 20240126692
    Abstract: Memory devices and systems with post-packaging master die selection, and associated methods, are disclosed herein. In one embodiment, a memory device includes a plurality of memory dies. Each memory die of the plurality includes a command/address decoder. The command/address decoders are configured to receive command and address signals from external contacts of the memory device. The command/address decoders are also configured, when enabled, to decode the command and address signals and transmit the decoded command and address signals to every other memory die of the plurality. Each memory die further includes circuitry configured to enable, or disable, or both individual command/address decoders of the plurality of memory dies. In some embodiments, the circuitry can enable a command/address decoder of a memory die of the plurality after the plurality of memory dies are packaged into a memory device.
    Type: Application
    Filed: December 26, 2023
    Publication date: April 18, 2024
    Inventors: Evan C. Pearson, John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger, Dale H. Hiscock
  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11959271
    Abstract: A building structure comprising a first film and a second film. The first film and the second film are each impregnated with L-Dopa. The building structure further includes regolith bulk material between the first film and the second film.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: April 16, 2024
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Michael D. Brown, Helen G. Scott, Miles T. Rogers, Benjamin J. Rosenthal, Michael J. Nicoletti, James J. Stusse
  • Patent number: 11918221
    Abstract: A surgical clip applier is provided that includes first and second jaws on a distal end of an elongate shaft, a clip advancing assembly extending through the shaft and configured to advance a distal-most clip from a plurality of clips in the shaft into the first and second jaws. The jaws have opposed inward facing surfaces, and each inward facing surface has a clip track defined therein for receiving and guiding legs of a clip into the first and second jaws. The clip track of at least one of the jaws has at least one deflectable clip retention member disposed therein and configured to apply a biasing force to a leg of a clip disposed within the jaws to thereby retain the clip within the jaws and maintain alignment of the clip with respect to the jaws. The clip track of at least one of the jaws may also have at least one recess or protrusion designed to be complementary to and mate with a protrusion or recess in a clip.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: March 5, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: Michael J. Stokes, Gregory G. Scott, Michael A. Murray, Ryan J. Laurent, Disha V. Labhasetwar
  • Patent number: 11911045
    Abstract: A method for adjusting control parameters of a clip applier using a surgical hub is disclosed. The method comprises gathering data during a first surgical procedure, evaluating the gathered data to determine the appropriate operation of a clip applier in a subsequent surgical procedure, gathering data during the operation of the clip applier in the subsequent surgical procedure, determining if the operation of the clip applier needs to be adjusted based on the data gathered during the subsequent surgical procedure, and adjusting the operation of the clip applier based on the data gathered during the subsequent surgical procedure.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: February 27, 2024
    Assignee: Cllag GmbH International
    Inventors: Frederick E. Shelton, IV, Michael J. Stokes, Gregory G. Scott, Nicholas M. Morgan, Disha V. Estera, Jason L. Harris, Chester O. Baxter, III, Daniel J. Mumaw
  • Patent number: 11868252
    Abstract: Memory devices and systems with post-packaging master die selection, and associated methods, are disclosed herein. In one embodiment, a memory device includes a plurality of memory dies. Each memory die of the plurality includes a command/address decoder. The command/address decoders are configured to receive command and address signals from external contacts of the memory device. The command/address decoders are also configured, when enabled, to decode the command and address signals and transmit the decoded command and address signals to every other memory die of the plurality. Each memory die further includes circuitry configured to enable, or disable, or both individual command/address decoders of the plurality of memory dies. In some embodiments, the circuitry can enable a command/address decoder of a memory die of the plurality after the plurality of memory dies are packaged into a memory device.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: January 9, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Evan C. Pearson, John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger, Dale H. Hiscock
  • Publication number: 20240004959
    Abstract: Systems of quickly and easily implanting a quick-connect heart valve prosthesis during a surgical procedure are provided. The heart valve may include a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A system and method for deployment includes an integrated handle shaft and balloon catheter. A safety member disposed between the balloon catheter and handle shaft prevents premature catheter advancement prior to heart valve placement at the annulus, and also may prevent premature balloon inflation prior to full catheter advancement.
    Type: Application
    Filed: September 14, 2023
    Publication date: January 4, 2024
    Inventors: Andrew Phung, August R. Yambao, Faisal Kalam, William C. Brunnett, Rafael Pintor, Michael J. Scott
  • Patent number: 11775613
    Abstract: Methods of quickly and easily implanting a quick-connect heart valve prosthesis during a surgical procedure are provided. The heart valve may include a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A system and method for deployment includes an integrated handle shaft and balloon catheter. A safety member disposed between the balloon catheter and handle shaft prevents premature catheter advancement prior to heart valve placement at the annulus, and also may prevent premature balloon inflation prior to full catheter advancement.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: October 3, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Andrew Phung, August R. Yambao, Faisal Kalam, William C. Brunnett, Rafael Pintor, Michael J. Scott
  • Patent number: 11670358
    Abstract: Memory devices and systems with adjustable through-silicon via (TSV) delay, and associated methods, are disclosed herein. In one embodiment, an apparatus includes a plurality of memory dies and a TSV configured to transmit signals to or receive signals from the plurality of memory dies. The apparatus further includes circuitry coupled to the TSV and configured to introduce propagation delay onto signals transmitted to or received from the TSV. In some embodiments, the apparatus includes additional circuitry configured to activate, deactivate, adjust at least a portion of the circuitry, or any combination thereof, to alter the propagation delay. In this manner, the apparatus can align internal timings of memory dies of the plurality of memory dies.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger, Dale H. Hiscock, Evan C. Pearson
  • Publication number: 20230072121
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 9, 2023
    Inventors: Rafael Pintor, Michael J. Scott, Thomas Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Patent number: 11471279
    Abstract: A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the frame attached thereto. The frame may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes an integrated handle shaft and balloon catheter. A valve holder is stored with the heart valve and the handle shaft easily attaches thereto to improve valve preparation steps.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 18, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Rafael Pintor, Michael J. Scott, Thomas Chien, Harvey H. Chen, August R. Yambao, Lawrence J. Farhat, Andrew Phung, William C. Brunnett, Carey L. Cristea, Sara M. Walls, Kevin W. Zheng, Faisal Kalam, Qinggang Zeng
  • Patent number: 11393790
    Abstract: Memory devices and systems with TSV health monitor circuitry, and associated methods, are disclosed herein. In one embodiment, a memory device includes a plurality of memory dies, a plurality of through-silicon vias (TSVs) in electrical communication with the memory dies; and circuitry. In some embodiments, the circuitry is configured to electrically couple a pair of TSVs of the plurality of TSVs to form a passive circuit. For example, the circuitry can activate a transistor electrically positioned between TSVs of the pair of TSVs to electrically couple the pair of TSVs. In these and other embodiments, the circuitry applies a test voltage to the pair of TSVs using the passive circuit to determine whether a TSV of the pair of TSVs includes degradation.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 19, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Dale H. Hiscock, Evan C. Pearson, John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger
  • Publication number: 20220172001
    Abstract: Methods of quickly and easily implanting a quick-connect heart valve prosthesis during a surgical procedure are provided. The heart valve may include a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A system and method for deployment includes an integrated handle shaft and balloon catheter. A safety member disposed between the balloon catheter and handle shaft prevents premature catheter advancement prior to heart valve placement at the annulus, and also may prevent premature balloon inflation prior to full catheter advancement.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 2, 2022
    Inventors: Andrew Phung, August R. Yambao, Faisal Kalam, William C. Brunnett, Rafael Pintor, Michael J. Scott
  • Publication number: 20220028443
    Abstract: Memory devices and systems with adjustable through-silicon via (TSV) delay, and associated methods, are disclosed herein. In one embodiment, an apparatus includes a plurality of memory dies and a TSV configured to transmit signals to or receive signals from the plurality of memory dies. The apparatus further includes circuitry coupled to the TSV and configured to introduce propagation delay onto signals transmitted to or received from the TSV. In some embodiments, the apparatus includes additional circuitry configured to activate, deactivate, adjust at least a portion of the circuitry, or any combination thereof, to alter the propagation delay. In this manner, the apparatus can align internal timings of memory dies of the plurality of memory dies.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventors: John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger, Dale H. Hiscock, Evan C. Pearson
  • Patent number: 11197757
    Abstract: Methods of quickly and easily implanting a quick-connect heart valve prosthesis during a surgical procedure are provided. The heart valve may include a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable frame, thereby enabling attachment to the annulus without sutures. A system and method for deployment includes an integrated handle shaft and balloon catheter. A safety member disposed between the balloon catheter and handle shaft prevents premature catheter advancement prior to heart valve placement at the annulus, and also may prevent premature balloon inflation prior to full catheter advancement.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: December 14, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Andrew Phung, August R. Yambao, Faisal Kalam, William C. Brunnett, Rafael Pintor, Michael J. Scott
  • Patent number: 11145352
    Abstract: Memory devices and systems with adjustable through-silicon via (TSV) delay, and associated methods, are disclosed herein. In one embodiment, an apparatus includes a plurality of memory dies and a TSV configured to transmit signals to or receive signals from the plurality of memory dies. The apparatus further includes circuitry coupled to the TSV and configured to introduce propagation delay onto signals transmitted to or received from the TSV. In some embodiments, the apparatus includes additional circuitry configured to activate, deactivate, adjust at least a portion of the circuitry, or any combination thereof, to alter the propagation delay. In this manner, the apparatus can align internal timings of memory dies of the plurality of memory dies.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: October 12, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger, Dale H. Hiscock, Evan C. Pearson
  • Patent number: 11044007
    Abstract: A system and method for providing backup recovery from outage at a primary gateway in a satellite communication system. Upon detecting an alert indicative of an outage, communication between the primary gateway and a plurality of terminals located within spot beams serviced by the primary gateway is suspended. A pre-switchover routine is performed to initialize a backup gateway capable of being substituted for the primary gateway, and a switchover routine is performed to transfer operations from the primary gateway to the backup gateway. Communication is subsequently enabled between the backup gateway and the plurality of terminals.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: June 22, 2021
    Assignee: HUGHES NETWORK SYSTEMS, LLC
    Inventors: David Whitefield, Michael J. Scott
  • Publication number: 20210173773
    Abstract: Memory devices and systems with post-packaging master die selection, and associated methods, are disclosed herein. In one embodiment, a memory device includes a plurality of memory dies. Each memory die of the plurality includes a command/address decoder. The command/address decoders are configured to receive command and address signals from external contacts of the memory device. The command/address decoders are also configured, when enabled, to decode the command and address signals and transmit the decoded command and address signals to every other memory die of the plurality. Each memory die further includes circuitry configured to enable, or disable, or both individual command/address decoders of the plurality of memory dies. In some embodiments, the circuitry can enable a command/address decoder of a memory die of the plurality after the plurality of memory dies are packaged into a memory device.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Inventors: Evan C. Pearson, John H. Gentry, Michael J. Scott, Greg S. Gatlin, Lael H. Matthews, Anthony M. Geidl, Michael Roth, Markus H. Geiger, Dale H. Hiscock