Patents by Inventor Michael J. Simons

Michael J. Simons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190335949
    Abstract: Disclosed is an induction burner ignition system that implements an induction burner located external to the fire pot. The induction burner can be controlled by a controller to start and stop according to a predetermined heating algorithm, and can further provide heat via heat sinks in contact with the induction burner. Because the induction burner is located external to the fire pot, it is easily repairable or replaceable and avoids the harmful atmosphere of the fire pot. The induction burner also provides more uniform heating than conventional hot rod technology to improve the pellet heating process.
    Type: Application
    Filed: May 6, 2019
    Publication date: November 7, 2019
    Applicant: Dansons, Inc.
    Inventors: Paul J. Simon, Michael R. Giebel
  • Patent number: 10439683
    Abstract: Systems and methods for relaying in broadcast single-frequency networks are disclosed herein. A single-frequency network can be formed in part using transmitters that receive data via a cooperative relay channel instead of a studio-to-transmitter link. In some embodiments, transmitter may use a portion of its transmission time to relay in-band information to the single-frequency network transmitter using time-division multiplexing.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: October 8, 2019
    Assignee: Sinclair Broadcast Group, Inc.
    Inventors: Frederick M. Baumgartner, Michael J. Simon, William Soreth, Thomas Ian Hoots, Marshall Hans Behrmann, Louis Herbert Libin
  • Patent number: 10432384
    Abstract: Apparatuses and methods are provided for generating, transmitting, receiving, and decoding one or more band segmented bootstrap signals and one or more corresponding partitioned post bootstrap signals. For example, a transmitter is configured to generate a first set of symbols and a second set of symbols, where the first set of symbols includes information about the second set of symbols. The transmitter is further configured to generate a third set of symbols and a fourth set of symbols, where the third set of symbols includes information about the fourth set of symbols. The transmitter is also configured to generate a data frame including the first, second, third, and fourth set of symbols. A bandwidth of the data frame includes a first segment and a second segment.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: October 1, 2019
    Assignee: Sinclair Broadcast Group, Inc.
    Inventor: Michael J. Simon
  • Patent number: 10423169
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190275328
    Abstract: Methods and apparatuses (e.g., devices and systems) for vagus nerve stimulation, including (but not limited to) sub-diaphragmatic vagus nerve stimulation. In particular, the methods and apparatuses described herein may be used to stimulate the posterior sub-diaphragmatic vagus nerve to treat inflammation and/or inflammatory disorders. The implantable microstimulators described herein may be leadless and batteryless.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 12, 2019
    Inventors: Ralph J. ZITNIK, Michael A. FALTYS, Jacob A. LEVINE, Jesse M. SIMON
  • Publication number: 20190268777
    Abstract: Wireless system architectures worldwide are undergoing a paradigm shift today. This, by adopting new technology and wireless system architectures based on Software Defined Network (SDN) and Network Function Virtualization (NFV) that are being instantiated using IT cloud computing methods. The 3 GPP is defining a new 5G radio and 5G core network in release 16 based on a cloud native system architecture. Herein, a new next generation multi-channel-tenant virtualized broadcast platform using SDN/NFV is disclosed using ATSC 3.0 standards A/321, A/322 as a baseline.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 29, 2019
    Applicant: Sinclair Broadcast Group, Inc.
    Inventors: Michael J. SIMON, Mark A. AITKEN, Ebenezer K. KOFI
  • Publication number: 20190268195
    Abstract: A base station may generate and transmit a transport stream including a sequence of frames. A frame may include a plurality of partitions, where each partition includes a corresponding set of OFDM symbols. For each partition, the OFDM symbols in that partition may have a corresponding cyclic prefix size and a corresponding FFT size, allowing different partitions to be targeted for different collections of user devices, e.g., user devices having different expected values of maximum delay spread and/or different ranges of mobility. The base station may also dynamically re-configure the sample rate of each frame, allowing further resolution in control of subcarrier spacing. By allowing the cyclic prefixes of different OFDM symbols to have different lengths, it is feasible to construct a frame that confirms to a set payload duration and has arbitrary values of cyclic prefix size per partition and FFT size per partition. The partitions may be multiplexed in time and/or frequency.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 29, 2019
    Applicant: One Media, LLC
    Inventors: Michael J. Simon, Kevin A. Shelby, Mark Earnshaw
  • Patent number: 10389569
    Abstract: Techniques relating to generating and receiving radio frames with multiple partitions are disclosed. A mobile device may include a wireless radio, one or more antennas, and one or more processors. In some embodiments, the mobile device is configured to receive a frame of wireless data that includes a plurality of partitions and partition data. In some embodiments, at least one of the partitions encodes local content and at least one of the partitions encodes regional content. In some embodiments, partition data indicates which partitions encode which type of content. In some embodiments, the mobile device is configured to select, based on the partition data, one or more of the plurality of partitions and decode the selected one or more partitions to determine data represented by the OFDM symbols in the selected one or more partitions.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: August 20, 2019
    Inventors: Michael J. Simon, Kevin A. Shelby, Mark Earnshaw
  • Publication number: 20190250041
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Miikka M. KANGAS, Michael J. BISHOP, Robert CHEN, David I. SIMON, Harold L. SONTAG, III, George Dee SKIDMORE
  • Publication number: 20190227541
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227542
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227554
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190210725
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: control the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20190193853
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10334550
    Abstract: Method and apparatus for signal detection in dynamic channels with high carrier frequency offset are provided. A coherent detector and a non-coherent detector are operated in parallel on a block of samples of an input signal to determine respective time offset candidates of the input signal. The time offset candidate obtained from the non-coherent detector is used to determine a frequency offset candidate of the input signal.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: June 25, 2019
    Assignee: One Media, LLC
    Inventors: Zahir Jaffer Raza, Michael J. Simon, Kevin A. Shelby, Sandeep Mavuduru Kannappa
  • Patent number: 10323987
    Abstract: This relates to sensor systems, detectors, imagers, and readout integrated circuits (ROICs) configured to selectively detect one or more frequencies or polarizations of light, capable of operating with a wide dynamic range, or any combination thereof. In some examples, the detector can include one or more light absorbers; the patterns and/or properties of a light absorber can be configured based on the desired measurement wavelength range and/or polarization direction. In some examples, the detector can comprise a plurality of at least partially overlapping light absorbers for enhanced dynamic range detection. In some examples, the detector can be capable of electrostatic tuning for one or more flux levels by varying the response time or sensitivity to account for various flux levels. In some examples, the ROIC can be capable of dynamically adjusting at least one of the frame rate integrating capacitance, and power of the illumination source.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: June 18, 2019
    Assignee: Apple Inc.
    Inventors: Miikka M. Kangas, Michael J. Bishop, Robert Chen, David I. Simon, Harold L. Sontag, III, George Dee Skidmore
  • Publication number: 20190176997
    Abstract: An electronic aircraft control system and an electronic aircraft control method are provided. In some embodiments, the aircraft control system includes a motor including a rotating shaft, a lever including an axis of rotation, the lever connected to the rotating shaft, wherein the position of the lever is not maintained by a mechanical clutch during normal operations. In some embodiments, the aircraft control system includes a fail-safe system for maintaining mechanical friction of the lever in an event of a failure, a sensor identifying a position of the lever, and a transmitter transmitting the lever position to a controller, the controller adjusting an aircraft performance device based on the received lever position. In some embodiments, the motor provides a torque on the lever. In some embodiments, the fail-safe system includes shear pins configured to break when a sufficient amount of manual torque is applied to the lever.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 13, 2019
    Applicant: Safe Flight Instrument Corporation
    Inventors: Michael J. LAMBTON, Louis C. SIMONS, Randall A. GREENE
  • Patent number: 10314501
    Abstract: Methods and apparatuses (e.g., devices and systems) for vagus nerve stimulation, including (but not limited to) sub-diaphragmatic vagus nerve stimulation. In particular, the methods and apparatuses described herein may be used to stimulate the posterior sub-diaphragmatic vagus nerve to treat inflammation and/or inflammatory disorders. The implantable microstimulators described herein may be inductively charged and/or communicated with using the external charger. The implant may include a receiving antenna wrapped around the battery and/or the housing of the microstimulator/microregulator and/or may include a high magnetic permeability material in order to serve as a magnetic core for the antenna coil. Wearable inductive chargers/communication devices for inductively communicating with (including charging) an implanted microstimulator are described herein, which may include magnetically conductive material to enhance communication with an implant, including sub-diaphragmatic implants.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 11, 2019
    Assignee: SetPoint Medical Corporation
    Inventors: Ralph J. Zitnik, Michael A. Faltys, Jacob A. Levine, Jesse M. Simon
  • Patent number: D852569
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: July 2, 2019
    Assignee: Masterbuilt Manufacturing, LLC
    Inventors: Michael R. Giebel, Paul J. Simon
  • Patent number: D852570
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: July 2, 2019
    Assignee: Masterbuilt Manufacturing, LLC
    Inventors: Michael R. Giebel, Paul J. Simon