Patents by Inventor Michael J. Siwajek

Michael J. Siwajek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904502
    Abstract: A process and system are provided for introducing chopped and dispersed carbon fibers on an automated production line amenable for inclusion in molding compositions, including the debundling of many carbon fibers collectively forming a tow into dispersed chopped carbon fibers that form a filler that undergoes plasma treatment prior to introducing coating silanes to uniformly increase bonding sites for coupling to a thermoset matrix. By exposing carbon tow to a plasma discharge, the carbon tow debundles and is used to form sheets of molding compositions with chopped dispersed fibers added to the composition, as the sheets move along a conveyor belt on the automated production line and at least one plasma generator mounted above the conveyor belt ionizes the carbon fibers. With resort to deionized air to mix plasma-treated chopped fibers, still further dispersion results.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 20, 2024
    Assignee: Teijin Automotive Technologies, Inc.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Philippe Bonte, Marc-Philippe Toitgans, Dominique Boyer
  • Patent number: 11655353
    Abstract: A sheet molding compound (SMC) is provided with superior conductivity properties based on the use of graphitics. A process for exfoliation of GnP and turbostratic carbon is also provided. By exfoliating the graphitics, a reduced amount of material can confer comparable properties relative to native GnPs or turbostratic carbon thereby reducing the amount of material usage, but also reducing negative effects to the base resin formulation through inclusion of these additives. Particular utility is found in thermoset resin molding to produce articles that are amenable to electrostatic coating and other surface treatments that rely on surface conductivity and especially in the realm of vehicle body parts.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 23, 2023
    Assignee: Teijin Automotive Technologies, Inc.
    Inventors: Nicholas T. Kamar, David J. Krug, Michael J. Siwajek
  • Publication number: 20220306857
    Abstract: A cured article includes a cured thermoset resin matrix defining an article surface. Hollow glass microspheroids are dispersed in the cured thermoset resin matrix. A low profile additive package is dispersed in the cured thermoset resin matrix. A plurality of carbon fiber bundles are present and wet by the cured thermoset resin matrix. The matrix formed from a prepolymer and styrenic monomer. A free radical initiator is provided to cure the thermoset resin matrix and having limited decomposition products with a boiling point of between 160-210° C.; wherein the article emits less than 250 parts per million (ppm) of volatiles as measured after heating to 185° C. at a rate of 14° C./min and held for 1 minute.
    Type: Application
    Filed: August 14, 2020
    Publication date: September 29, 2022
    Applicant: Teijin Automotive Technologies, Inc.
    Inventors: David J. Krug, III, Nicholas T. Kamar, Michael Z. Asuncion, Steven L. Prascius, MIchael J. Siwajek
  • Patent number: 11247415
    Abstract: A process for resin transfer molding (RTM) with staggered injection of a resin is provided that injects resin into a plurality of injection ports of a mold. The temperature and pressure applied to the mold are controlled during injection to limit promote rapid filling of the mold cavity. The injection ports are activated for injecting the resin in any order of individually, in groups, or pairings. Fibers are readily added to the mold separately or within the resin. Cycle times of from 1 to 5 minutes are provided for the process.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: February 15, 2022
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Philippe Bonte, Marc-Phillippe Toitgans, Dominique Boyer
  • Patent number: 11214894
    Abstract: A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof, an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: January 4, 2022
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael J. Hiltunen, Shane Skop, Christopher Hiltunen, Patrick Hale
  • Patent number: 11135816
    Abstract: A process is provided for molding a resin matrix around a distribution of well distributed epoxy coated glass fibers to produce an article. The article is mass produced by the molding process based on a one or more layer structure, with an outer panel having a high degree of surface smoothness common to automotive body panels and a comparatively high tensile strength joinder thereto. The epoxy coated glass fibers are present in a single panel of an article or all such panels of a multiple layer article. The epoxy coated glass fibers can be present in an articles in a form of: chopped glass fibers that are intermixed and vary in orientation, a woven roving containing predominately epoxy glass fibers with carbon fibers dispersed there through, or non-woven fiber mats.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: October 5, 2021
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Philippe Bonte, Marc-Philippe Toitgans, Dominique Boyer, Michael J. Siwajek, Probir Kumar Guha, Michael J. Hiltunen, Shane Skop
  • Patent number: 10844204
    Abstract: A molding composition formulation is provided that includes polypropylene, glass fiber, and a cellulosic powder used as a filler. The filler may be at least one of coconut shell powder, walnut shell powder, or rice hull. The molding composition formulation may further include natural cellulosic fiber illustratively including at least one of coconut fibers, bamboo fibers, sugar cane fibers, or banana skin fibers. The molding composition may be compression moldable long fiber thermoplastic (LFTD). The molding composition formulation may be used in thermoforming. In a specific embodiment of the molding composition, the formulation proportion of the polypropylene is 50 to 60 percent of the formulation; and the polypropylene substitute is 5 to 15 percent of the formulation, and in an alternative embodiment, the formulation proportion of the polypropylene is 40 to 80 percent, the cellulosic powder is 1 to 25 percent, and the glass fiber is 1 to 50 percent.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: November 24, 2020
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael J. Hiltunen, Shane Skop
  • Patent number: 10730990
    Abstract: A monomer is provided for a thermoset molding compound. The monomer is also polymerized with conventional monomers to form thermoplastic polymers. Graphene oxide is used to chelate metal ions to form a graphene oxide chelate that is coupled to a monomer retaining an aliphatic unsaturation capable of free radical polymerization reaction. Inclusion of a metal ion chelated to the graphene oxide affords control over the conductivity of the resultant article. In some embodiments, the monomer is found polymerized into a resulting article proximal to the article surface.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: August 4, 2020
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Michael Z. Asuncion, Probir Kumar Guha, David J. Krug, Michael J. Siwajek
  • Publication number: 20200165410
    Abstract: A sheet molding compound (SMC) is provided with superior conductivity properties based on the use of graphitics. A process for exfoliation of GnP and turbostratic carbon is also provided. By exfoliating the graphitics, a reduced amount of material can confer comparable properties relative to native GnPs or turbostratic carbon thereby reducing the amount of material usage, but also reducing negative effects to the base resin formulation through inclusion of these additives. Particular utility is found in thermoset resin molding to produce articles that are amenable to electrostatic coating and other surface treatments that rely on surface conductivity and especially in the realm of vehicle body parts.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Applicant: Continental Structural Plastics, Inc.
    Inventors: Nicholas T. Kamar, David J. Krug, Michael J. Siwajek
  • Publication number: 20200122413
    Abstract: A process for resin transfer molding (RTM) with staggered injection of a resin is provided that injects resin into a plurality of injection ports of a mold. The temperature and pressure applied to the mold are controlled during injection to limit promote rapid filling of the mold cavity. The injection ports are activated for injecting the resin in any order of individually, in groups, or pairings. Fibers are readily added to the mold separately or within the resin. Cycle times of from 1 to 5 minutes are provided for the process.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Applicant: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Philippe Bonte, Marc-Phillippe Toitgans, Dominique Boyer
  • Publication number: 20190283276
    Abstract: A process and system are provided for introducing chopped and dispersed carbon fibers on an automated production line amenable for inclusion in molding compositions, including the debundling of many carbon fibers collectively forming a tow into dispersed chopped carbon fibers that form a filler that undergoes plasma treatment prior to introducing coating silanes to uniformly increase bonding sites for coupling to a thermoset matrix. By exposing carbon tow to a plasma discharge, the carbon tow debundles and is used to form sheets of molding compositions with chopped dispersed fibers added to the composition, as the sheets move along a conveyor belt on the automated production line and at least one plasma generator mounted above the conveyor belt ionizes the carbon fibers. With resort to deionized air to mix plasma-treated chopped fibers, still further dispersion results.
    Type: Application
    Filed: November 29, 2017
    Publication date: September 19, 2019
    Inventors: Probir Kumar GUHA, Michael J. SIWAJEK, Philippe BONTE, Marc-Philippe TOITGANS, Dominique BOYER
  • Patent number: 10337129
    Abstract: A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof, an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: July 2, 2019
    Assignee: Continental Structural Plastics, Inc.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael J. Hiltunen, Shane Skop, Christopher Hiltunen, Patrick Hale
  • Publication number: 20190160794
    Abstract: A process is provided for molding a resin matrix around a distribution of well distributed epoxy coated glass fibers to produce an article. The article is mass produced by the molding process based on a one or more layer structure, with an outer panel having a high degree of surface smoothness common to automotive body panels and a comparatively high tensile strength joinder thereto. The epoxy coated glass fibers are present in a single panel of an article or all such panels of a multiple layer article. The epoxy coated glass fibers can be present in an articles in a form of: chopped glass fibers that are intermixed and vary in orientation, a woven roving containing predominately epoxy glass fibers with carbon fibers dispersed there through, or non-woven fiber mats.
    Type: Application
    Filed: April 11, 2017
    Publication date: May 30, 2019
    Inventors: Philippe BONTE, Marc-Philippe TOITGANS, Dominique BOYER, Michael J. SIWAJEK, Probir Kumar GUHA, Michael J. HILTUNEN, Shane SKOP
  • Publication number: 20190031808
    Abstract: A monomer is provided for a thermoset molding compound. The monomer is also polymerized with conventional monomers to form thermoplastic polymers. Graphene oxide is used to chelate metal ions to form a graphene oxide chelate that is coupled to a monomer retaining an aliphatic unsaturation capable of free radical polymerization reaction. Inclusion of a metal ion chelated to the graphene oxide affords control over the conductivity of the resultant article. In some embodiments, the monomer is found polymerized into a resulting article proximal to the article surface.
    Type: Application
    Filed: January 24, 2017
    Publication date: January 31, 2019
    Inventors: Michael Z. ASUNCION, Probir Kumar GUHA, David J. KRUG, Michael J. SIWAJEK
  • Patent number: 10131098
    Abstract: An automated process is provided for debundling carbon fiber tow that includes feeding a carbon fiber tow into a chopper. The carbon fiber tow is cut to form lengths of chopped tow portions. The lengths of chopped tow portions are distributed on a moving conveyor. The lengths of chopped tow portions are exposed to a first plasma discharge from a first plasma source on the moving conveyor to create debundled carbon fibers. Alternatively, the carbon fiber tow is exposed to the first plasma discharge prior to being cut into lengths. A system for applying chopped fibers to a sheet of molding compound includes a chopper for cutting a carbon fiber tow into lengths of chopped tow portions. A conveyor belt receives the lengths of chopped tow portions. At least one plasma generating source is arrayed across of the conveyor.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: November 20, 2018
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Frank Macher, Probir K. Guha, Michael J. Siwajek, Shane Skop, Rahul Rane, Adam Burley
  • Patent number: 10030149
    Abstract: A process of formulating a curable thermoset resin formulation is provided that includes reacting a natural cellulosic filler with at least one of: a silsesquioxane, a isocyanate, a base, or an organic acid to form a reduced hydrophilicity filler. By intermixing the resulting reduced hydrophilicity filler with a thermoset cross linkable polymeric resin, a curable thermoset resin formulation is formed that has superior properties to conventional formulations in terms of density and environmental impact. The formulation properties in terms of strength of the cured article are improved relative to untreated natural fillers. The treatment is advantageous relative to plasma treatment. An article is also provided produced upon cure of the formulation.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: July 24, 2018
    Assignee: Continental Structural Plastics, Inc
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael Joseph Hiltunen
  • Publication number: 20180105958
    Abstract: A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof, an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael J. Hiltunen, Shane Skop, Christopher Hiltunen, Patrick Hale
  • Patent number: 9944788
    Abstract: A molded article is provided that has a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Glass fibers are crossed linked to the resin matrix via a silane coupling agent reactive with the matrix. A molded article is provided that has a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Glass fibers each covalently bonded to at least one microspheroid matrix via a silane coupling agent reactive with a surface of the at least one microspheroids are present in increase the fiber pull strength. A sizing composition for treating glass fibers is also provided for use in such articles.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 17, 2018
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael J. Hiltunen, Michael Z. Asuncion
  • Patent number: 9868829
    Abstract: A molded article is provided that includes a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Microspheroids having a mean diameter of from 16 to 45 microns are embedded in the resin matrix. The microspheroids having a specific gravity of between 0.19 and 0.6 and an isotactic crush strength of greater than or equal to 2750 kilopascals (kPa). Surface activating agent alkoxysilane molecules are covalently bonded to each of the microspheroids. Filler particles are also present in the resin matrix. Fibers are also present in the resin matrix. The fibers being natural fibers, glass fibers, carbon fibers, or a combination thereof. The article has a specific gravity of between 0.80 and 1.25.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 16, 2018
    Assignee: CONTINENTAL STRUCTURE PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael J. Hiltunen, Michael Z. Asuncion
  • Patent number: 9843076
    Abstract: A temperature regulation and management system is provide that has an inner wall and an outer wall forming a space for accommodating a phase change material (PCM) with the space between the walls, in one or both of the walls, or a combination of such locations. The inner wall is in contact with an object that requires temperature regulation within a specified operating range, such as a vehicle battery pack. The inner wall and the outer wall are both formed from sheet molding compound (SMC), or the outer wall if formed of a filled polyurethane.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: December 12, 2017
    Assignee: CONTINENTAL STRUCTURAL PLASTICS, INC.
    Inventors: Probir Kumar Guha, Michael J. Siwajek, Michael Joseph Hiltunen, Swati Neogi, Jack Douglas Dunagan, Adam Craig Burley