Patents by Inventor Michael J. Suscavage

Michael J. Suscavage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7276121
    Abstract: Method and apparatus are provided for forming metal nitride (MN), wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and then contacting MI with ammonia to form the MN in a process of reduced or no toxicity. Such method is conducted in a reactor that is maintained at a pressure below one atmosphere for enhanced uniformity of gas flow and of MN product. The MN is then deposited on a substrate, on one or more seeds or it can self-nucleate on the walls of a growth chamber, to form high purity and uniform metal nitride material. The inventive MN material finds use in semiconductor materials, in nitride electronic devices, various color emitters, high power microwave sources and numerous other electronic applications.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: October 2, 2007
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: David F. Bliss, Vladimir L. Tassev, Michael J. Suscavage, John S. Bailey
  • Patent number: 6969426
    Abstract: Method and apparatus are provided for forming metal nitride (MN), wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and then contacting MI with ammonia to form the MN in a process of reduced or no toxicity. Such method is conducted in a reactor that is maintained at a pressure below one atmosphere for enhanced uniformity of gas flow and of MN product. The MN is then deposited on a substrate, on one or more seeds or it can self-nucleate on the walls of a growth chamber, to form high purity and uniform metal nitride material. The inventive MN material finds use in semiconductor materials, in nitride electronic devices, various color emitters, high power microwave sources and numerous other electronic applications.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: November 29, 2005
    Inventors: David F. Bliss, Vladimir L. Tassev, Michael J. Suscavage, John S. Bailey
  • Patent number: 6676752
    Abstract: Method and apparatus are provided for forming metal nitrides (MN) wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and contacting MI with ammonia to form the MN in a process of reduced or no toxicity. MN is then deposited on a substrate, on one or more seeds or it can self nucleate on the walls of a growth chamber, to form high purity metal nitride material. The inventive MN material finds use in semiconductor materials and in making nitride electronic devices as well as other uses.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: January 13, 2004
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Michael J. Suscavage, David F. Bliss, Michael J. Callahan, Gerald W. Iseler, John S. Bailey
  • Patent number: 6406540
    Abstract: This invention provides a process and apparatus for producing products of M-nitride materials wherein M=gallium (GaN), aluminum (AlN), indium (InN), germanium (GeN), zinc (ZnN) and ternary nitrides and alloys such as zinc germanium nitride or indium aluminum gallium nitride. This process and apparatus produce either free-standing single crystals, or deposit layers on a substrate by epitaxial growth or polycrystalline deposition. Also high purity M-nitride powders may be synthesized. The process uses an ammonium halide such as ammonium chloride, ammonium bromide or ammonium iodide and a metal to combine to form the M-nitride which deposits in a cooler region downstream from and/or immediately adjacent to the reaction area. High purity M-nitride can be nucleated from the vapor to form single crystals or deposited on a suitable substrate as a high density material.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: June 18, 2002
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Meckie T. Harris, Michael J. Suscavage, David F. Bliss, John S. Bailey, Michael Callahan
  • Patent number: 6113985
    Abstract: Using a GaN growth furnace, at least three different techniques can be used for forming the targets for the deposition of thin films. In the first, nitrides can be deposited as a dense coating on a target backing plate for use as a target. In this approach, the backing plate is placed near the Group III metal. During processing, the Group III metal or metal halide vaporizes and reacts with the nitrogen source to deposit a dense polycrystalline layer on the backing plate. To build up a thick layer on the backing plate, the backing plate is repeatedly placed in the processing furnace until a satisfactory thickness is attained. For the second approach, a properly shaped reaction vessel, the dense, thick Group III nitride crust that forms on top of the Group III metal during the process can be used directly or mechanically altered to meet the size requirements for a sputtering target holder.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: September 5, 2000
    Assignee: The United States of America as represented by Secretary of the Air Force
    Inventors: Michael J. Suscavage, Meckie T. Harris, David F. Bliss, John S. Bailey, Michael Callahan
  • Patent number: 6037068
    Abstract: This invention permits superconducting ceramics, as well as other ceramic materials, to be spray deposited onto indefinitely large sheets of metallic substrate from a carboxylic acid salt solution. Elemental metal precursors of the superconductor are introduced into the solution as carboxylic acid salts. The deposit formed on the malleable metallic substrate is then thermomechanically calcined to form c-axis textured metal-superconductor composite sheet structures. These composite sheet structures can be formed by pressing together two ceramic-substrate structures, ceramic face-to-face, to form a metal-ceramic-metal sheet structure, or by overlaying a metal sheet over the deposited structure. Once the structure has been thermomechanically calcined, the c-axis of the superconductor is oriented parallel to the vector defining the plane of the metal sheet, i.e., perpendicular to the surface of the plane.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: March 14, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: L. Pierre de Rochemont, Michael J. Suscavage, Daniel F. Ryder, Jr., Mikhail Klugerman
  • Patent number: 6027826
    Abstract: The invention provides methods to manufacture dense, complex c-axis oriented ceramic oxide layers with thickness greater than 2.5 microns (.mu.m) on a metallic substrate (composites) without the use of an interfacial barrier, buffer, or surface layer using a metalorganic deposition process and thermomechanical reaction treatments is disclosed. A porous amorphous metal oxide ceramic deposit is formed directly on the substrate by spray pyrolyzing a mixed metalorganic precursor solution onto the metallic substrate. The metallic substrate has been previously heated to temperatures greater than the boiling point of the organic solvent and are high enough to initiate in situ decomposition of the metalorganic precursor salts. The process does not apply the precursor solution to the substrate as a liquid coating that is pyrolyzed in subsequent processing steps.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: February 22, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Pierre L. deRochemont, Daniel E. Ryder, Michael J. Suscavage, Mikhail Klugerman
  • Patent number: 5866252
    Abstract: This invention permits superconducting ceramics, as well as other ceramic materials, to be spray deposited onto indefinitely large sheets of metallic substrate from a carboxylic acid salt solution. Elemental metal precursors of the superconductor are introduced into the solution as carboxylic acid salts. The deposit formed on the malleable metallic substrate is then thermomechanically calcined to form c-axis textured metal-superconductor composite sheet structures. These composite sheet structures can be formed by pressing together two ceramic-substrate structures, ceramic face-to-face, to form a metal-ceramic-metal sheet structure, or by overlaying a metal sheet over the deposited structure. Once the structure has been thermomechanically calcined, the c-axis of the superconductor is oriented parallel to the vector defining the plane of the metal sheet, i.e., perpendicular to the surface of the plane.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: February 2, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: L. Pierre de Rochemont, Michael J. Suscavage, Daniel F. Ryder, Jr., Mikhail Klugerman