Patents by Inventor Michael J. Veraa

Michael J. Veraa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9475738
    Abstract: Disclosed herein are methods and apparatus for deactivating a catalyst composition in an reaction product stream. One such method and apparatus contact the catalyst composition with a catalyst-deactivating composition and a diluent in a vapor phase of a product-receiving vessel, wherein the boiling point of the diluent is at least 5.0° C. greater than the boiling point of the catalyst-deactivating composition. Also disclosed are oligomerization systems for producing oligomers.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 25, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael W. Weber, James R. Lattner, Michael J. Veraa
  • Publication number: 20150291486
    Abstract: Disclosed herein are methods and apparatus for deactivating a catalyst composition in an reaction product stream. One such method and apparatus contact the catalyst composition with a catalyst-deactivating composition and a diluent in a vapor phase of a product-receiving vessel, wherein the boiling point of the diluent is at least 5.0° C. greater than the boiling point of the catalyst-deactivating composition. Also disclosed are oligomerization systems for producing oligomers.
    Type: Application
    Filed: August 23, 2012
    Publication date: October 15, 2015
    Inventors: Michael W. Weber, James R. Lattner, Michael J. Veraa
  • Patent number: 8524972
    Abstract: This disclosure relates generally to low temperature steam stripping methods for byproduct polymer and solvent separation from an ethylene oligomerization process. The methods disclosed have been found to separate byproduct polymer from solvent without fouling process equipment or causing other process problems. The byproduct polymer ends up as flowable solid particles in a water stream that may be easily discharged from the process, while solvent is recovered for recycle to the process. In embodiments of the invention, over 90 wt % of the solvent used is recovered and the discharged byproduct polymer is less than 20 wt % solvent.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael W. Weber, Randy L. Foster, James R. Lattner, Jimmy L. Tardy, Michael J. Veraa
  • Patent number: 8415518
    Abstract: This invention is directed to a process for producing olefin product from an oxygenate feed that includes dimethyl ether (DME). The process uses an olefin forming catalyst that contains a porous crystalline material, preferably a porous crystalline aluminosilicate molecular sieve material. The process produces high quantities of light olefin (i.e., ethylene, propylene, and mixtures thereof).
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 9, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard B. Hall, Guang Cao, Christopher David William Jenkins, James R. Lattner, Michael J. Veraa, Thomas H. Colle
  • Patent number: 7772292
    Abstract: A method of producing synthesis gas for methanol synthesis that comprises the steps of: (a) obtaining a hydrogen stream that has greater than 5 mol % methane from an external process; (b) feeding into a reforming reactor: (i) a feed gas that comprises methane, (ii) water in a specified amount, (iii) oxygen in a specified amount, and (iv) the hydrogen stream in a specified amount; (c) reacting the feed gas, water, oxygen and the hydrogen stream in the reactor; and (d) withdrawing from the reactor the synthesis gas that is at a specific temperature, has less than 3 mol % methane, and has a stoichiometric number of from 1.9 to 2.3.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: August 10, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christopher David William Jenkins, James R. Lattner, Michael J. Veraa, Keith H. Kuechler
  • Patent number: 7547814
    Abstract: This invention is directed to methods of removing water and other condensable materials, as well as solids particles such as catalyst particles, from olefin product streams so as to reduce fouling in the liquid and vapor separation equipment. In order to reduce fouling or contamination in the condensing or quenching process, this invention includes adding a hydrocarbon to at least a portion of the condensed liquid fraction in an amount that effects separation of the liquid fraction into upper and lower fractions.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: June 16, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Michael J. Veraa, Steven E. Silverberg, Michael P. Nicoletti, John Richard Shutt
  • Publication number: 20080185338
    Abstract: This invention is directed to methods of removing water and other condensable materials, as well as solids particles such as catalyst particles, from olefin product streams so as to reduce fouling in the liquid and vapor separation equipment. In order to reduce fouling or contamination in the condensing or quenching process, this invention includes adding a hydrocarbon to at least a portion of the condensed liquid fraction in an amount that effects separation of the liquid fraction into upper and lower fractions.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Inventors: Cor F. Van Egmond, Michael J. Veraa, Steven E. Silverberg, Michael P. Nicoletti, John Richard Shutt
  • Publication number: 20080033218
    Abstract: This invention is directed to a process for making alcohol from syngas, and a process for making olefin, as well as polyolefin, from the alcohol. The syngas is converted to a mixed alcohol stream using a catalyst comprising at least one oxide component. Upon contacting the catalyst with a desired syngas composition, a preferred mixed alcohol product is formed. Preferably, the syngas composition has a stoichiometric molar ratio of less than 2.
    Type: Application
    Filed: June 20, 2007
    Publication date: February 7, 2008
    Inventors: James R. Lattner, Matthew James Vincent, Kun Wang, Michel Molinier, Michael J. Veraa, Anthony F. Volpe, Hailian Li, Jeffrey C. Yoder, Mark Muraoka
  • Publication number: 20080033225
    Abstract: This invention is directed to a process for producing olefin product from an oxygenate feed that includes dimethyl ether (DME). The process uses an olefin forming catalyst that contains a porous crystalline material, preferably a porous crystalline aluminosilicate molecular sieve material. The process produces high quantities of light olefin (i.e., ethylene, propylene, and mixtures thereof).
    Type: Application
    Filed: June 14, 2007
    Publication date: February 7, 2008
    Inventors: Richard B. Hall, Guang Cao, Christopher David William Jenkins, James R. Lattner, Michael J. Veraa, Thomas H. Colle
  • Publication number: 20070282018
    Abstract: A method of producing synthesis gas for methanol synthesis that comprises the steps of: (a) obtaining a hydrogen stream that has greater than 5 mol % methane from an external process; (b) feeding into a reforming reactor: (i) a feed gas that comprises methane, (ii) water in a specified amount, (iii) oxygen in a specified amount, and (iv) the hydrogen stream in a specified amount; (c) reacting the feed gas, water, oxygen and the hydrogen stream in the reactor; and (d) withdrawing from the reactor the synthesis gas that is at a specific temperature, has less than 3 mol % methane, and has a stoichiometric number of from 1.9 to 2.3.
    Type: Application
    Filed: April 13, 2007
    Publication date: December 6, 2007
    Inventors: Christopher David William Jenkins, James R. Lattner, Michael J. Veraa, Keith H. Kuechler