Patents by Inventor Michael J. Vonesh

Michael J. Vonesh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9381326
    Abstract: Embodiments of the present disclosure comprise occlusion and drug delivery devices and methods. One aspect of the disclosure comprises a drug delivery device comprising an inner expansion member and an outer drug delivery component. Another aspect of the disclosure comprises bioabsorbable, lumen-occluding implants.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: July 5, 2016
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Jeffrey B. Duncan, Douglas S. Paget, Rachel Radspinner, Edward E. Shaw, Michael J. Vonesh
  • Patent number: 9375215
    Abstract: A self-expanding stent-graft provided in a diametrically compacted state for implantation and retained preferably by a constraining sheath, useful for the temporary or permanent repair of injured, partially or entirely transected body conduits including blood vessels. It may be used under direct visualization to quickly stop or substantially reduce loss of blood from such damaged vessels and to quickly re-establish perfusion distal to the injury site. The device would typically be implanted under emergency room conditions but also be used in field situations by trained medical technicians. After an end of the device is inserted into a blood vessel through the injury access, deployment preferably initiates from the device end in a direction moving toward the middle of the length of the device by directionally releasing the constraining sheath.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: June 28, 2016
    Assignee: W. L. GORE & ASSOCIATES, INC.
    Inventors: Edward H. Cully, Jeffrey B. Duncan, Keith M. Flury, Paul D. Goodman, Wayne D. House, Vrad W. Levering, Philip P. Off, Daniel M. O'Shea, Michael J. Vonesh, Jason M. Wiersdorf
  • Publication number: 20160151186
    Abstract: A medical device includes a vessel member, a port that couples a compartment interior of the vessel member to a region exterior of the vessel member, and a tubular member that defines a lumen. A distal end of the tubular member is attached to an internal surface of the vessel member within the compartment so that a portion of the internal surface of the vessel member provides a seal at a distal end of the lumen. The tubular member passes through the port, and the proximal end of the tubular member is configured to remain exterior of the compartment. A delivery of a sufficient amount of a filling material into the lumen of the tubular member causes a length of the tubular member to pass through the port and into the vessel compartment.
    Type: Application
    Filed: February 4, 2016
    Publication date: June 2, 2016
    Inventors: Edward H. CULLY, Michael J. VONESH
  • Patent number: 9277905
    Abstract: A medical device includes a balloon member, a port that couples a compartment interior of the balloon member to a region exterior of the balloon member, and a tubular member that defines a lumen. A distal end of the tubular member is attached to an internal surface of the balloon member within the compartment so that a portion of the internal surface of the balloon member provides a seal at a distal end of the lumen. The tubular member passes through the port, and the proximal end of the tubular member is configured to remain exterior of the compartment. A delivery of a sufficient amount of a filling material into the lumen of the tubular member causes a length of the tubular member to pass through the port and into the balloon compartment.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: March 8, 2016
    Assignee: W. L. GORE & ASSOCIATES, INC.
    Inventors: Edward H. Cully, Michael J. Vonesh
  • Publication number: 20150289880
    Abstract: Embodiments herein include devices and methods directed toward creating reverse flow within a vessel and thereby providing protection against embolic debris. Embodiments comprise a catheter and a plurality of occluders that are expandable and adjustable within a lumen to create low-pressure areas that reroute blood flow and embolic debris therein.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 15, 2015
    Inventors: Edward H. Cully, Benjamin M. Trapp, Michael J. Vonesh
  • Publication number: 20150258250
    Abstract: The invention is an improved biocompatible surface for a variety of medical purposes. The biocompatible surface employs a unique tight microstructure that demonstrates enhanced cellular response in the body, particularly when placed in contact with blood. As a blood contact surface, the present invention can be beneficially employed in a wide variety of implantable devices and in many other devices and equipment that come in contact with blood.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 17, 2015
    Inventors: Keith A. Knisley, Vishnu T. Marla, Rachel Radspinner, Paul A. Silvagni, Jason J. Strid, Michael J. Vonesh
  • Patent number: 9119937
    Abstract: A catheter provided with a guidewire catheter lumen having a thin covering that is easily punctured by a guidewire at virtually any desired point along the catheter length. The thin covering may be integral with the catheter shaft, or may be a separate component that covers only the portion of the catheter shaft immediately adjacent the outer portion of the guidewire lumen, or may be a thin tubular construct that surrounds the entire catheter shaft. The covering is preferably relatively translucent, allowing for good visualization of the location of the end of the guidewire to enable puncturing of the covering at the desired location along the length of the catheter shaft. The covering is also preferably tear resistant at puncture sites. The catheter shaft is preferably made of a material having a color that provides good visibility against an operating field, and more preferably is phosphorescent either entirely or in part.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: September 1, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Keith M. Flury, Michael J. Vonesh
  • Patent number: 9107733
    Abstract: The present invention relates to a non-evertable blood filter that divides the transverse cross sectional area of a venous vessel into three annular regions or zones. The inner zone, the region immediately surrounding the longitudinal axis of the vessel, is maintained in a relatively open state with only minimal interference from the members making up the filter device so that blood flow can be maintained at a relatively normal rate. Concentrically surrounding the inner zone is the intermediate zone, to which captured emboli are directed out of the bloodstream passing primarily through the inner zone. Finally, concentrically surrounding the intermediate zone is the outer zone adjacent to the vessel wall.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: August 18, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H Cully, Cody L. Hartman, Craig T. Nordhausen, Eric M. Tittelbaugh, Michael J. Vonesh
  • Patent number: 9107742
    Abstract: A stent-graft including a helically-wound stent component provided with a covering of graft material. It is removable from the site of implantation by gripping an end of the helically-wound stent component with a retrieval device and applying tension to the stent component. The use of such a retrieval device allows the stent-graft to be removed remotely, such as via a catheter inserted into the body at a different location from the implantation site. The design of the stent-graft is such that the stent component is extended axially while the adjacent portion of the graft separates between windings of the stent component. The axial extension of the stent component, with portions of the graft still joined to the stent component, allows the device to be unravelled and removed through a catheter of diameter adequately small to be inserted into the body cavity that contained the stent-graft.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: August 18, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Erin B. Hutchinson, Michael J. Vonesh, Woodrow W. Watson
  • Publication number: 20150209132
    Abstract: An improved embolic filter frame is provided. The filter frame provides enhanced longitudinal compliance, improved sealing, low profile delivery, and a-short deployed length. The looped support struts have high “radial” stiffness with low “longitudinal” stiffness. When deployed, the frame exerts a relatively high stress onto a vessel wall to maintain an effective seal, yet remains longitudinally compliant. Minor displacements of the support wire or catheter are therefore not translated to the filter. The looped support struts elongate when tensioned and assume a compressed and essentially linear form. When the delivery catheter constraint is removed, the struts “snap open” and assume a looped configuration, exerting a high degree of force onto the vessel wall, creating an enhanced filter to vessel wall seal.
    Type: Application
    Filed: April 2, 2015
    Publication date: July 30, 2015
    Inventors: Edward H. Cully, Michael J. Vonesh
  • Publication number: 20150209134
    Abstract: A self-expanding implantable medical device formed from one or more non-interlocking filaments. Stents, stent-grafts, occluder devices, and filters are manufactured from one or more filaments utilizing a non-interlocking crossing pattern.
    Type: Application
    Filed: February 24, 2015
    Publication date: July 30, 2015
    Inventors: Edward H. Cully, Joseph A. Huppenthal, Craig T. Nordhausen, Michael J. Vonesh
  • Patent number: 9084857
    Abstract: Embodiments herein include devices and methods directed toward creating reverse flow within a vessel and thereby providing protection against embolic debris. Embodiments comprise a catheter and a plurality of occluders that are expandable and adjustable within a lumen to create low-pressure areas that reroute blood flow and embolic debris therein.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 21, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Benjamin M. Trapp, Michael J. Vonesh
  • Publication number: 20150165194
    Abstract: A highly flexible implantable lead that offers improved flexibility, fatigue life and fatigue and abrasion resistance improved reliability, effective electrode tissue contact with a small diameter and low risk of tissue damage during extraction. In one embodiment the lead is provided with both defibrillation electrodes and pacing/sensing electrodes. For defibrillation/pacing leads, the lead diameter may be as small as six French or smaller. The construction utilizes helically wound conductors. For leads incorporating multiple separate conductors, many of the helically wound conductors are arranged in a multi-filar relationship. Preferably, each conductor is a length of wire that is uninsulated at about the middle of its length to create an electrode, wherein the conductor is folded in half at about the middle of the length to create first and second length segments that constitute parallel conductors.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Jeffrey B. Duncan, Aaron J. Hopkinson, Thomas R. McDaniel, Michael J. Vonesh, Jason M. Wiersdorf
  • Patent number: 9056001
    Abstract: Large diameter self-expanding endoprosthetic devices, such as stents and stent grafts for delivery to large diameter vessels, such as the aorta, are disclosed having very small compacted delivery dimensions. Devices with deployed dimensions of 26 to 40 mm or more are disclosed that are compacted to extremely small dimensions of 5 mm or less, enabling percutaneous delivery of said devices without the need for surgical intervention. Compaction efficiencies are achieved by combining unique material combinations with new forms of restraining devices, compaction techniques, and delivery techniques. These inventive devices permit consistent percutaneous delivery of large vessel treatment devices. Additionally, small endoprosthetic devices are disclosed that can be compacted to extremely small dimensions for delivery through catheter tubes of less than 1 mm diameter.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 16, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20150127035
    Abstract: Novel cerebral vasculature devices are disclosed, including thrombectomy removal devices that include a continuous braided structure, a proximal portion, a distal portion, and a first expandable portion located between the proximal portion and the distal portion. The braided structure includes a plurality of wires. The proximal portion and the distal portion include polymer imbedded at least partially into the braided structure. The device is useful for removing thrombus from a patient's vasculature.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Benjamin M. Trapp, Nathan L. Friedman, Michael J. Vonesh
  • Patent number: 9023076
    Abstract: An embolic frame having looped support struts. The frame configuration provides enhanced longitudinal compliance, improved sealing against a vessel wall, low profile delivery, and a short deployed length. The looped support struts have a high degree of “radial” stiffness with a low degree of “longitudinal” stiffness. In the deployed state, the frame exerts a relatively high stress onto a vessel wall to maintain an effective seal, yet remains compliant in the longitudinal direction. The looped support struts elongate when tensioned and assume a compressed and essentially linear form. While constrained in this linear state by a delivery catheter, the support struts exert minimal stress onto the delivery system. The overall delivery profile and stiffness are therefore reduced. When the delivery catheter constraint is removed during deployment, the struts “snap open” and assume a looped configuration which exert a high degree of force onto the vessel wall.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: May 5, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Michael J. Vonesh
  • Patent number: 9023077
    Abstract: An improved embolic filter frame is provided. The filter frame provides enhanced longitudinal compliance, improved sealing, low profile delivery, and short deployed length. The looped support struts have high “radial” stiffness with low “longitudinal” stiffness. When deployed, the frame exerts a relatively high stress onto a vessel wall to maintain an effective seal, yet remains longitudinally compliant. Minor displacements of the support wire or catheter are therefore not translated to the filter. The looped support struts elongate when tensioned and assume a compressed and essentially linear form. When the delivery catheter constraint is removed, the struts “snap open” and assume a looped configuration, exerting a high degree of force onto the vessel wall, creating an enhanced filter to vessel wall seal.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 5, 2015
    Assignee: W.L. Gore & Associates, Inc.
    Inventors: Edward H. Cully, Michael J. Vonesh
  • Patent number: 9005269
    Abstract: Bioabsorbable self-expanding medical devices formed of an integral framework with a multiplicity of fenestrations are provided. The framework is continuous, non-filamentous, non-braided, and non-interlaced. The devices includes a non-blended hydrolysable co-polymeric material comprising an amorphous component with a glass transition temperature that is below ambient body temperature and a crystallizable component that possesses a crystalline melting point in excess of ambient body temperature. The devices radially expand from a compressed first diameter to an uncompressed second diameter equal to or greater than 1.5 times the first diameter within two minutes in an aqueous medium at 37° C. following release of a compressive force placed on the devices. Additionally, the medical device does not change axial length significantly as the radial dimensions of the devices are changed.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: April 14, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Paul C. Begovac, Robert L. Cleek, Edward H. Cully, Charles Flynn, Byron K. Hayes, Ryan V. Peterson, Michael J. Vonesh, Charles F. White
  • Patent number: 8996134
    Abstract: A highly flexible implantable lead that offers improved flexibility, fatigue life and fatigue and abrasion resistance improved reliability, effective electrode tissue contact with a small diameter and low risk of tissue damage during extraction. In one embodiment the lead is provided with both defibrillation electrodes and pacing/sensing electrodes. For defibrillation/pacing leads, the lead diameter may be as small as six French or smaller. The construction utilizes helically wound conductors. For leads incorporating multiple separate conductors, many of the helically wound conductors are arranged in a multi-filar relationship. Preferably, each conductor is a length of wire that is uninsulated at about the middle of its length to create an electrode, wherein the conductor is folded in half at about the middle of the length to create first and second length segments that constitute parallel conductors.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 31, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jeffrey B. Duncan, Aaron J. Hopkinson, Thomas R. McDaniel, Michael J. Vonesh, Jason M. Wiersdorf
  • Publication number: 20140303711
    Abstract: The present invention is directed to a deployment system for an endoluminal device. The deployment system includes a confining sheath placed around a compacted endoluminal device. A deployment line is provided in the system that is an integral extension of the sheath. As the deployment line is actuated, the sheath retracts from around the compacted endoluminal device. As the sheath retracts from around the endoluminal device, material from the sheath may be converted into deployment line. Once the sheath is retracted from around the compacted endoluminal device, the endoluminal device expands in configuration and repairs vascular or cardiac structures of an implant recipient. Any remaining sheath material is removed from the implantation site along with the deployment line.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Inventors: Edward H. Cully, Mark J. Ulm, Michael J. Vonesh