Patents by Inventor Michael J. Wilhelm

Michael J. Wilhelm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160289527
    Abstract: This invention provides a method for minimizing or relieving a sustained casing pressure in an annulus of a wellbore, where the annulus contains a first fluid having a density. The method comprises introducing a second fluid into the annulus. The second fluid has a density greater than the density of the first fluid and the second fluid is immiscible with the first fluid. The method is characterized in that the second fluid comprises at least one halogen-containing organic compound. The halogen-containing organic compound has one or more halogen atoms selected from fluorine, chlorine, bromine, and iodine, with the proviso that at least one of the halogen atoms is chlorine, bromine, or iodine.
    Type: Application
    Filed: December 9, 2014
    Publication date: October 6, 2016
    Inventors: Kristina L. Butler, Zhongxin Ge, Joseph O'Day, John C. Parks, Michael J. Wilhelm, Tse-Chong Wu, Charles Daniel Varnado, JR.
  • Patent number: 9395718
    Abstract: A method incorporating an antenna and RF circuitry into the object acting as a substrate includes modeling the object as a three-dimensional object, and designing the antenna and RF circuitry for direct placement on the surface of the object. The step of designing is at least partially based on the size, three-dimensional shape, and material properties of the surface of the object acting as the substrate. The step of designing is preferably performed through use of an evolutionary optimizer implemented using parallel computing devices.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: July 19, 2016
    Assignee: Sciperio, Inc.
    Inventors: Kenneth H. Church, Robert M. Taylor, Michael J. Wilhelm, Hao Dong, Yanzhong Li
  • Publication number: 20080262187
    Abstract: This invention provides a blend which comprises (i) at least one aromatic primary diamine, with which has been blended a color-minimizing amount of at least one N,N-dmydrocarbylhydroxylamine, wherein the aromatic primary diamine is in the form of one benzene ring having two primary amino groups on the ling, which amino groups are meta or para relative to each other, and in which each position ortho to a primary amino group bears an alkyl group, and (ii) at least one aromatic secondary diamine having a Gardner color number no more than about 7, wherein said aromatic secondary diamine either is in the form of one benzene ring having two secondary amino groups on the ring, or is in the form of two benzene rings connected by an alkylene bridge and having one secondary amino group on each ring. Optionally, at least one N,N-dihydrocarbylhydroxylamine has been blended with the aromatic secondary diamine.
    Type: Application
    Filed: December 21, 2006
    Publication date: October 23, 2008
    Applicant: ALBEMARLE CORPORATION
    Inventors: John Y. Lee, David W. Owens, Paul L. Wiggins, Richard D. Glass, Michael J. Wilhelm, Robert Phillip Slicker
  • Patent number: 7183998
    Abstract: A micro-helix antenna. The antenna comprises a helically-shaped conductive element disposed on a dielectric core. The diameter of the helix formed by the conductive element is very small relative to the wavelength of the antenna, preferably no more than about 1/100th of the wavelength. Having such a small diameter, this micro-helix antenna can be further compressed into two- and three-dimensional shapes, such as spirals, helices and meandering or stochastic patterns. The micro-helix antenna can be created by pressing a fine wire into a helical shape. Alternately, the helical conductor can be formed by a laser ablation process or laying down the helical shape using a direct-write process.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: February 27, 2007
    Assignee: Sciperio, Inc.
    Inventors: Michael J. Wilhelm, Robert M. Taylor, Ryan T. Salisbury
  • Patent number: 7042419
    Abstract: An antenna system includes an antenna element and an electromagnetic bandgap element proximate the antenna element wherein the electromagnetic bandgap element is optimized for narrow bandwidth operation thereby providing radiofrequency selectivity to the antenna system. Preferably the electromagnetic bandgap element is tunable such as through use of a bias-alterable dielectric substrate or other tuning mechanism. The design approach also provides a means of creating an ultra-thin low-profile narrowband tunable channel selective antenna system suitable for low frequency applications.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: May 9, 2006
    Assignee: The Penn State Reserach Foundation
    Inventors: Douglas H. Werner, Pingjuan L. Werner, Michael J. Wilhelm
  • Patent number: 5346466
    Abstract: A drop detector circuit and method are provided for a drop detector of the type including a drop chamber and an electro-optical sensor. A detector detects drops passing through the drop detector in an optical sensing path between the detector and at least one light source. In response to the detection of a drop passing through the optical path, the detector produces an output signal. A capacitor is connected between the detector and an amplifier to block the DC component of the output signal. After amplification, the signal is passed through a low pass filter to further block signals caused by undesirable factors. The cutoff frequency of the low pass filter is controlled by a microprocessor that controls the pump that pumps liquid from the drop chamber. The detector and light source or sources are arranged to detect drops falling in the drop chamber at virtually any angle and in virtually any ambient light condition.
    Type: Grant
    Filed: April 1, 1992
    Date of Patent: September 13, 1994
    Assignee: Sherwood Medical Company
    Inventors: Denis Y. Yerlikaya, Randall J. Krohn, Clarence L. Walker, Michael J. Wilhelm, Curtis D. Kinghorn